Advertisement

Probability of radiation of twisted photons by axially symmetric bunches of particles

  • O. V. BogdanovEmail author
  • P. O. Kazinski
Regular Article
  • 9 Downloads

Abstract.

In most cases, the twisted photons generated directly by charged particles in undulators and laser waves are produced by bunches of particles and not by one charged particle. However, up to now, the theoretical studies of such a radiation were mainly based on description of radiation produced by one charged particle. In the present paper, we investigate the effect of a finite width of a particle bunch on radiation of twisted photons. The general formulas connecting the radiation probability distribution of twisted photons produced by bunches of identical particles with the radiation probability distribution of twisted photons generated by one particle are obtained for axially symmetric bunches. The bunch is called axially symmetric if it is axially symmetric with respect to the detector axis at some instant of time and all the particles in the bunch move along parallel trajectories. The general sum rules for the probability of radiation of twisted photons by axially symmetric bunches are established. In particular, we prove that the projection of the average total angular momentum of radiated twisted photons per particle in the bunch does not depend on the radial profile of the bunch. The uniform, Gaussian, and exponential radial bunch profiles are considered in detail. The radiation of axially symmetric bunches in ordinary and crystalline undulators is investigated. The selection rules for radiation of twisted photons by one particle in undulators are violated when the finite width of the particle bunch is taken into account. We find the condition when this violation is marginal. The form of the radiation probability distribution of twisted photons becomes universal for wide incoherent axially symmetric particle bunches. We completely describe these universal distributions.

References

  1. 1.
    K. Gottfried, T.-M. Yan, Quantum Mechanics: Fundamentals (Springer, New York, 2003)zbMATHCrossRefGoogle Scholar
  2. 2.
    R. Jáuregui, S. Hacyan, Phys. Rev. A 71, 033411 (2005)CrossRefADSGoogle Scholar
  3. 3.
    I. Bialynicki-Birula, Z. Bialynicka-Birula, Opt. Commun. 264, 342 (2006)CrossRefADSGoogle Scholar
  4. 4.
    U.D. Jentschura, V.G. Serbo, Phys. Rev. Lett. 106, 013001 (2011)CrossRefADSGoogle Scholar
  5. 5.
    U.D. Jentschura, V.G. Serbo, Eur. Phys. J. C 71, 1571 (2011)CrossRefADSGoogle Scholar
  6. 6.
    I.P. Ivanov, Phys. Rev. D 83, 093001 (2011)CrossRefADSGoogle Scholar
  7. 7.
    J. Leach et al., Phys. Rev. Lett. 88, 257901 (2002)CrossRefADSGoogle Scholar
  8. 8.
    G.C.G. Berkhout et al., Phys. Rev. Lett. 105, 153601 (2010)CrossRefADSGoogle Scholar
  9. 9.
    T. Su et al., Opt. Express 20, 9396 (2012)CrossRefADSGoogle Scholar
  10. 10.
    M.P.J. Lavery, J. Courtial, M.J. Padgett, Measurement of light’s orbital angular momentum, in The Angular Momentum of Light, edited by D.L. Andrews, M. Babiker (Cambridge University Press, New York, 2013)Google Scholar
  11. 11.
    G. Ruffato et al., Sci. Rep. 8, 10248 (2018)CrossRefADSGoogle Scholar
  12. 12.
    B. Paroli, M. Siano, L. Teruzzi, M.A.C. Potenza, Phys. Rev. Accel. Beams 22, 032901 (2019)CrossRefADSGoogle Scholar
  13. 13.
    M.J. Padgett, Opt. Express 25, 11267 (2017)CrossRefADSGoogle Scholar
  14. 14.
    D.L. Andrews, M. Babiker (Editors), The Angular Momentum of Light (Cambridge University Press, New York, 2013)Google Scholar
  15. 15.
    J.P. Torres, L. Torner (Editors), Twisted Photons (Wiley-VCH, Weinheim, 2011)Google Scholar
  16. 16.
    D.L. Andrews (Editor), Structured Light and Its Applications (Academic Press, Amsterdam, 2008)Google Scholar
  17. 17.
    S. Sasaki, I. McNulty, Phys. Rev. Lett. 100, 124801 (2008)CrossRefADSGoogle Scholar
  18. 18.
    E. Hemsing, A. Marinelli, S. Reiche, J. Rosenzweig, Phys. Rev. ST Accel. Beams 11, 070704 (2008)CrossRefADSGoogle Scholar
  19. 19.
    E. Hemsing, A. Marinelli, J.B. Rosenzweig, Phys. Rev. Lett. 106, 164803 (2011)CrossRefADSGoogle Scholar
  20. 20.
    A. Afanasev, A. Mikhailichenko, On generation of photons carrying orbital angular momentum in the helical undulator, arXiv:1109.1603Google Scholar
  21. 21.
    V.A. Bordovitsyn, O.A. Konstantinova, E.A. Nemchenko, Russ. Phys. J. 55, 44 (2012)CrossRefGoogle Scholar
  22. 22.
    S. Stock, A. Surzhykov, S. Fritzsche, D. Seipt, Phys. Rev. A 92, 013401 (2015)CrossRefADSGoogle Scholar
  23. 23.
    J.A. Sherwin, Phys. Rev. A 95, 052101 (2017)CrossRefADSGoogle Scholar
  24. 24.
    M. Katoh et al., Phys. Rev. Lett. 118, 094801 (2017)CrossRefADSGoogle Scholar
  25. 25.
    Y. Taira, T. Hayakawa, M. Katoh, Sci. Rep. 7, 5018 (2017)CrossRefADSGoogle Scholar
  26. 26.
    P.R. Ribič et al., Phys. Rev. X 7, 031036 (2017)Google Scholar
  27. 27.
    Y.-Y. Chen, J.-X. Li, K.Z. Hatsagortsyan, Ch.H. Keitel, Phys. Rev. Lett. 121, 074801 (2018)CrossRefADSGoogle Scholar
  28. 28.
    E. Hemsing et al., Nat. Phys. 9, 549 (2013)CrossRefGoogle Scholar
  29. 29.
    J. Bahrdt et al., Phys. Rev. Lett. 111, 034801 (2013)CrossRefADSGoogle Scholar
  30. 30.
    M. Katoh et al., Sci. Rep. 7, 6130 (2017)CrossRefADSGoogle Scholar
  31. 31.
    O.V. Bogdanov, P.O. Kazinski, G.Yu. Lazarenko, Phys. Rev. A 97, 033837 (2018)CrossRefADSGoogle Scholar
  32. 32.
    Particle Data Group (M. Tanabashi et al.), Phys. Rev. D 98, 030001 (2018)Google Scholar
  33. 33.
    O.V. Bogdanov, P.O. Kazinski, G.Yu. Lazarenko, Phys. Rev. D 99, 116016 (2019)CrossRefADSGoogle Scholar
  34. 34.
    W. Krause, A.V. Korol, A.V. Solov’yov, W. Greiner, Nucl. Instrum. Methods A 483, 455 (2002)CrossRefADSGoogle Scholar
  35. 35.
    A. Kostyuk, A. Korol, A. Solov’yov, W. Greiner, Channeling and Radiation in Periodically Bent Crystals (Springer, Heidelberg, 2013)Google Scholar
  36. 36.
    S.V. Abdrashitov, O.V. Bogdanov, P.O. Kazinski, T.A. Tukhfatullin, Phys. Lett. A 382, 3141 (2018)CrossRefADSGoogle Scholar
  37. 37.
    V. Epp, J. Janz, M. Zotova, Nucl. Instrum. Methods B 436, 78 (2018)CrossRefADSGoogle Scholar
  38. 38.
    G.N. Watson, A Treatise on the Theory of Bessel Functions (Cambridge University Press, Cambridge, 1944)Google Scholar
  39. 39.
    O.V. Bogdanov, P.O. Kazinski, G.Yu. Lazarenko, Ann. Phys. 406, 114 (2019)CrossRefADSGoogle Scholar
  40. 40.
    G.L. Kotkin, V.G. Serbo, A. Schiller, Int. J. Mod. Phys. A 7, 4707 (1992)CrossRefADSGoogle Scholar
  41. 41.
    V.G. Bagrov, V.V. Belov, A.Yu. Trifonov, J. Phys. A 26, 6431 (1993)CrossRefADSGoogle Scholar
  42. 42.
    V.V. Belov, D.V. Boltovskiy, A.Yu. Trifonov, Int. J. Mod. Phys. B 8, 2503 (1994)CrossRefADSGoogle Scholar
  43. 43.
    V.G. Bagrov, V.V. Belov, A.Yu. Trifonov, Methods of Mathematical Physics: Asymptotic Methods in Relativistic Quantum Mechanics (Tomsk. Politekh. Univ., Tomsk, 2006) (in Russian)Google Scholar
  44. 44.
    O. Matula, A.G. Hayrapetyan, V.G. Serbo, A. Surzhykov, S. Fritzsche, J. Phys. B 46, 205002 (2013)CrossRefADSGoogle Scholar
  45. 45.
    O. Matula, A.G. Hayrapetyan, V.G. Serbo, A. Surzhykov, S. Fritzsche, New J. Phys. 16, 053024 (2014)CrossRefADSGoogle Scholar
  46. 46.
    D.V. Karlovets, JHEP 03, 049 (2017)MathSciNetCrossRefADSGoogle Scholar
  47. 47.
    D.V. Karlovets, G.L. Kotkin, V.G. Serbo, A. Surzhykov, Phys. Rev. A 95, 032703 (2017)CrossRefADSGoogle Scholar
  48. 48.
    A.A. Peshkov, S. Fritzsche, A. Surzhykov, Phys. Rev. A 92, 043415 (2015)CrossRefADSGoogle Scholar
  49. 49.
    A. Afanasev, V.G. Serbo, M. Solyanik, J. Phys. G 45, 055102 (2018)CrossRefADSGoogle Scholar
  50. 50.
    M. Solyanik-Gorgone, A. Afanasev, C.E. Carlson, C.T. Schmiegelow, F. Schmidt-Kaler, J. Opt. Soc. Am. B 36, 565 (2019)CrossRefADSGoogle Scholar
  51. 51.
    D.V. Karlovets, Phys. Rev. A 98, 012137 (2018)CrossRefADSGoogle Scholar
  52. 52.
    A.P. Prudnikov, Yu.A. Brychkov, O.I. Marichev, Integrals and Series: Special Functions, Vol. 2 (Taylor & Francis, London, 1998)Google Scholar
  53. 53.
    V.G. Bagrov, G.S. Bisnovatyi-Kogan, V.A. Bordovitsyn, A.V. Borisov, O.F. Dorofeev, V.Ya. Epp, V.S. Gushchina, V.C. Zhukovskii, Synchrotron Radiation Theory and its Development (World Scientific, Singapore, 1999)Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Physics FacultyTomsk State UniversityTomskRussia
  2. 2.Division for Mathematics and Computer SciencesTomsk Polytechnic UniversityTomskRussia

Personalised recommendations