Advertisement

Ultraviolet complete quantum field theory and particle model

  • J. W. MoffatEmail author
Regular Article
  • 5 Downloads

Abstract.

An ultraviolet complete particle model is constructed for the observed particles of the standard model. The quantum field theory associates infinite derivative entire functions with propagators and vertices, which make quantum loops finite and maintain Poincaré invariance and unitarity of the model. The electroweak model \( SU(2)\times U(1)\) group is treated as a broken symmetry group with non-vanishing experimentally determined boson and fermion masses. A spontaneous symmetry breaking of the vacuum by a scalar Higgs field is not invoked to restore boson and fermion masses to the initially massless \( SU(2)\times U(1)\) Lagrangian of the standard model. The hierarchy naturalness problem of the Higgs boson mass is resolved and the model contains only experimentally observed masses and coupling constants. The model can predict a stable vacuum evolution. Experimental tests to distinguish the standard model from the alternative model are proposed. The finite quantum field theory can be extended to quantum gravity.

Notes

References

  1. 1.
    J.W. Moffat, Phys. Rev. D 41, 1177 (1990)ADSCrossRefGoogle Scholar
  2. 2.
    P.W. Higgs, Phys. Rev. Lett. 12, 47 (1964)CrossRefGoogle Scholar
  3. 3.
    P.W. Higgs, Phys. Rev. Lett. 13, 48 (1964)ADSCrossRefGoogle Scholar
  4. 4.
    F. Englert, R. Brout, Phys. Rev. Lett. 13, 321 (1964)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    G.S. Guralnik, C.R. Hagen, T.W. Kibble, Phys. Rev. Lett. 13, 585 (1964)ADSCrossRefGoogle Scholar
  6. 6.
    S. Dawson, C. Englert, T. Plehn, Phys. Rep. 816, 1 (2019) arXiv:1808.01324 [hep-ph]ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    J.D. Wells, Synthese 194, 477 (2017) arXiv:1603.06131 [hep-ph]MathSciNetCrossRefGoogle Scholar
  8. 8.
    V.L. Ginsburg, L.D. Landau, Zh. Eksp. Teor. Fiz. 20, 1064 (1950) English translation in L.D. Landau, Collected PapersGoogle Scholar
  9. 9.
    S. Weinberg, Phys. Rev. Lett. 19, 1267 (1967)ADSCrossRefGoogle Scholar
  10. 10.
    A. Salam, Elementary Particle Physics, edited by N. Svartholm (Almqvist and Wiksells, Stockholm, 1968)Google Scholar
  11. 11.
    G. 't Hooft, Nucl. Phys. B 35, 167 (1971)ADSCrossRefGoogle Scholar
  12. 12.
    G. 't Hooft, M. Veltman, Nucl. Phys. B 44, 189 (1972)ADSCrossRefGoogle Scholar
  13. 13.
    J.C. Taylor, Gauge Theories of Weak Interactions (Cambridge Universaity Press, Cambridge, 1976)Google Scholar
  14. 14.
    F. Halzen, A.D. Martin, Quarks and Leptons: An introductory course in Modern Particle Physics (John Wiley & Sons, New York, 1984)Google Scholar
  15. 15.
    I.J.R. Aitchison, A.J.G. Hey, Gauge theories in Particle Physics, Vol. II, QCD and the Electroweak Theory, 3ed. (Taylor and Francis, UK, 2004)Google Scholar
  16. 16.
    M.E. Peskin, D.V. Schroeder, An Introduction to Quantum Field Theory (Perseus Books, 1995)Google Scholar
  17. 17.
    D. Evens, J.W. Moffat, G. Kleppe, R.P. Woodard, Phys. Rev. D 43, 499 (1991)ADSCrossRefGoogle Scholar
  18. 18.
    J.W. Moffat, Mod. Phys. Lett. A 6, 1011 (1991)ADSCrossRefGoogle Scholar
  19. 19.
    J.W. Moffat, Eur. Phys. J. Plus 126, 43 (2011) arXiv:1008.2482 [gr-qc]CrossRefGoogle Scholar
  20. 20.
    J.W. Moffat, arXiv:1104.5706 [hep-th]Google Scholar
  21. 21.
    G. Kleppe, R.P. Woodard, Ann. Phys. 221, 106 (1993)ADSCrossRefGoogle Scholar
  22. 22.
    J.W. Moffat, Phys. Rev. D 39, 3654 (1989)ADSCrossRefGoogle Scholar
  23. 23.
    J.W. Moffat, 1st Karl Schwarzschild Meeting on Gravitational Physics, in Proceedings Springer (Springer, 2016) p. 299, arXiv:1407.2086Google Scholar
  24. 24.
    C.P. Burgess, Annu. Rev. Nucl. Part. Sci. 57, 329 (2007)ADSCrossRefGoogle Scholar
  25. 25.
    G. Kleppe, R.P. Woodard, Nucl. Phys. B 388, 81 (1992) arXiv:9203016ADSCrossRefGoogle Scholar
  26. 26.
    R.E. Cutkosky, J. Math. Phys. 1, 429 (1960)ADSCrossRefGoogle Scholar
  27. 27.
    E.T. Tomboulis, Mod. Phys. Lett. A 30, 1540005 (2015)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    M.A. Clayton, L. Demopolous, J.W. Moffat, Int. J. Mod. Phys. A 9, 4549 (1994) arXiv:hep-th/9303077ADSCrossRefGoogle Scholar
  29. 29.
    A. Ghoshal, A. Mazumdar, N. Okada, D. Villalba, Phys. Rev. D 97, 076011 (2018) arXiv:1709.09222 [hep-th]ADSCrossRefGoogle Scholar
  30. 30.
    C.G. Callan, Phys. Rev. D 2, 1541 (1970)ADSCrossRefGoogle Scholar
  31. 31.
    K. Symanzik, Commun. Math. Phys. 18, 227 (1970)ADSCrossRefGoogle Scholar
  32. 32.
    P.A.M. Dirac, Lectures on Quantum Mechanics (Dover, 2001)Google Scholar
  33. 33.
    H. Haber, E. Logan, Phys. Rev. D 62, 015011 (2000)ADSCrossRefGoogle Scholar
  34. 34.
    M.E. Peskin, T. Takeuchi, Phys. Rev. Lett. 65, 964 (1990)ADSCrossRefGoogle Scholar
  35. 35.
    G. Altarelli, R. Barbieri, S. Jadach, Nucl. Phys. B 369, 3 (1992) 376ADSCrossRefGoogle Scholar
  36. 36.
    A. Kusenko, P. Langacker, Phys. Lett. 391, 29 (1997) arXiv:hep-ph/9608340MathSciNetCrossRefGoogle Scholar
  37. 37.
    A.V. Bednyakov, B.A. Kniehl, A.F. Pikelner, O.L. Veretin, Phys. Rev. Lett. 115, 201802 (2015) arXiv:1507.08833 [hep-ph]ADSCrossRefGoogle Scholar
  38. 38.
    D. Anselmi, Mod. Phys. Lett. A 33, 1950123 (2019) arXiv:1811.02600 [hep-th]CrossRefGoogle Scholar
  39. 39.
    T. Biswas, A. Mazumdar, W. Siegl, JCAP 03, 009 (2006) arXiv:hep-th/0508194ADSCrossRefGoogle Scholar
  40. 40.
    T. Biswas, E. Gerwick, T. Koivisto, A. Mazumdar, Phys. Rev. Lett. 108, 031101 (2012) arXiv:1110.5248 [gr-qc]ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Perimeter Institute for Theoretical PhysicsWaterloo, OntarioCanada

Personalised recommendations