Advertisement

Traversable wormhole magnetic monopoles from Dymnikova metric

  • Jesús Martín Romero
  • Mauricio BelliniEmail author
Regular Article
  • 14 Downloads

Abstract.

We study a traversable wormhole originated by a transformation over the 4D Dymnikova metric, which describes analytic black holes (BH). By using a transformation of coordinates which is adapted from the one used in the Einstein-Rosen bridge, we study a specific family of geodesics in which a test particle with non-zero electric charge induces an effective magnetic monopole, that is perceived by observers outside the wormhole. Because the Riemannian geometry cannot explain the presence of magnetic monopoles, we propose a torsional geometry in order to explore the possibility that magnetic monopoles can be geometrically induced. We obtain an expression that relates torsion and magnetic fields jointly with a Dirac-like expression for magnetic and electric charges, such that torsion makes it possible to define a fundamental length that provides a magnetic field and a spacetime discretization.

References

  1. 1.
    B.P. Abbott et al., Phys. Rev. Lett. 116, 061102 (2016)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    B.P. Abbott et al., Phys. Rev. Lett. 119, 161101 (2017)ADSCrossRefGoogle Scholar
  3. 3.
    LIGO Scientific and Virgo Collaborations (B.P. Abbott et al.), Astrophys. J. Lett. 851, L35 (2017) arXiv:1711.05578ADSCrossRefGoogle Scholar
  4. 4.
    B.P. Abbott et al., Phys. Rev. Lett. 119, 141101 (2017)ADSCrossRefGoogle Scholar
  5. 5.
    B.P. Abbott et al., Phys. Rev. Lett. 118, 221101 (2017)ADSCrossRefGoogle Scholar
  6. 6.
    B.P. Abbott et al., Phys. Rev. Lett. 116, 241103 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    R. Penrose, Phys. Rev. Lett. 14, 57 (1965)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    S. Hawking, Proc. R. Soc. London A 300, 187 (1967)ADSCrossRefGoogle Scholar
  9. 9.
    S. Hawking, R. Penrose, Proc. R. Soc. London A 314, 529 (1970)ADSCrossRefGoogle Scholar
  10. 10.
    J.M. Bardeen, in Conference Proceedings of GR5 (Tbilisi, URSS, 1968) p. 174Google Scholar
  11. 11.
    K.A. Bronnikov, Phys. Rev. D 63, 044005 (2001)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    E. Elizalde, S.R. Hildebrandt, Phys. Rev. D 65, 124024 (2002)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    I. Dymnikova, Gen. Relativ. Gravit. 24, 235 (1992)ADSCrossRefGoogle Scholar
  14. 14.
    P. Nicolini, A. Smailagic, E. Spallucci, Phys. Lett. B 632, 547 (2006)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    S. Ansoldi, P. Nicolini, Phys. Lett. B 645, 261 (2007)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    S. Hossenfelder, L. Modesto, I. Prmont-Schwarz, Phys. Rev. D 81, 044036 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    I. Dymnikova, E. Galaktionov, Class. Quantum Grav. 32, 165015 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    M.S. Ma, Ann. Phys. 362, 529 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    T. Johannsen, Phys. Rev. D 88, 044002 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    V.P. Frolov, A. Zelnikov, Phys. Rev. D 95, 044042 (2017)ADSCrossRefGoogle Scholar
  21. 21.
    I. Dymnikova, Class. Quantum Grav. 19, 725 (2002)ADSCrossRefGoogle Scholar
  22. 22.
    I. Dymnikova, Class. Quantum Grav. 21, 4417 (2004)ADSCrossRefGoogle Scholar
  23. 23.
    M. Novello, S.E.P. Bergliaffa, J.M. Salim, Class. Quantum Grav. 17, 18 (2000)CrossRefGoogle Scholar
  24. 24.
    L. Flamm, Phys. Z 17, 448 (1916)Google Scholar
  25. 25.
    H. Weyl, Philosophie der Mathematik und Naturwissenschaft, in Handbuch der Philosophie (Leibniz Verlag, Munich, 1928)Google Scholar
  26. 26.
    A. Einstein, N. Rosen, Phys. Rev. 48, 73 (1935)ADSCrossRefGoogle Scholar
  27. 27.
    A. Wheeler, Phys. Rev. 97, 511 (1955)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    P. Gao, D.L. Jafferis, A. Wall, JHEP 12, 151 (2017)ADSCrossRefGoogle Scholar
  29. 29.
    J.M. Maldacena, X.-L. Qi, Eternal traversable wormhole, arXiv:1804.00491Google Scholar
  30. 30.
    J.M. Maldacena, A. Milekhin, F. Popov, Traversable wormholes in four dimensions, arXiv:1807.04726Google Scholar
  31. 31.
    Z. Fu, B. Grado-White, D. Marolf, Class. Quantum Grav. 36, 045006 (2019)ADSCrossRefGoogle Scholar
  32. 32.
    C. Bachas, I. Lavdas, Fortsch. Phys. 66, 1700096 (2018)CrossRefGoogle Scholar
  33. 33.
    F. Hammad, E. Masse, P. Labelle, Phys. Rev. D 98, 124010 (2018)ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    L.A. Anchordoqui, Mod. Phys. Lett. A 13, 1095 (2016)ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    M.R. Mehdizadeh, A.H. Ziaie, Phys. Rev. D 99, 064033 (2019)ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    H. Weitzenböck, Invarianten Theorie (Noordhoff, Groningen, 1923)Google Scholar
  37. 37.
    A. Simpson, M. Visser, JCAP 02, 042 (2019)ADSCrossRefGoogle Scholar
  38. 38.
    I. Dymnikova, Int. J. Mod. Phys. D 5, 529 (1996)ADSCrossRefGoogle Scholar
  39. 39.
    J. Ponce de León, Phys. Rev. D 95, 124015 (2017)ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    J.M. Romero, M. Bellini, Phys. Dark Univ. 15, 47 (2017)CrossRefGoogle Scholar
  41. 41.
    M. Visser, D. Hochberg, Ann. Israel Phys. Soc. 13, 249 (1997)ADSGoogle Scholar
  42. 42.
    P.A.M. Dirac, Proc. Roy. Soc. A 133, 60 (1931)ADSCrossRefGoogle Scholar
  43. 43.
    T.T. Wu, C.N. Yang, Properties of Matter Under Unusual Conditions (Inter-Science, New York, 1968)Google Scholar
  44. 44.
    G. ’t Hooft, Nucl. Phys. B 79, 276 (1974)ADSCrossRefGoogle Scholar
  45. 45.
    V. de Sabbata, B. Kumar Datta, Geometric Algebra and Applications to Physics (CRC Press, 2006)Google Scholar
  46. 46.
    J. Yepez, Einsteins Vierbein Field Theory of Curved Space, (Air Force Cambridge Research Lab., 2011) arXiv:1106.2037Google Scholar
  47. 47.
    H. Kleinert, Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets (World Scientific, 2009)Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de Física, Facultad de Ciencias Exactas y NaturalesUniversidad Nacional de Mar del Plata, Funes 3350Mar del PlataArgentina
  2. 2.Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR)Consejo Nacional de Investigaciones Cientıficas y Técnicas (CONICET)Mar del PlataArgentina

Personalised recommendations