Advertisement

Size-dependent random vibration analysis of AFM probe with tip mass considering surface viscoelastic effect

  • Sina Fallahzadeh RastehkenariEmail author
  • Majid Ghadiri
Regular Article
  • 14 Downloads

Abstract.

In the present paper, the random vibration response of an atomic force microscope (AFM) cantilever with a tip mass which is excited by a white-noise random displacement at the tip has been studied based on the nonlocal theory of Eringen for the first time. The Laplace transform method has been utilized to find the frequency response function of the beam and effect of various parameters such as tip mass, contact stiffness, contact damping and nonlocal parameter on the mean square value of vibrations has been analyzed numerically and illustrated graphically. It has been revealed through numerical examples that the amount of the tip mass has a powerful effect on the random vibration response of the beam, and the effect of the tip mass must be taken into account to perform a viable and realistic random vibration analysis in the field of Atomic Force Microscopy. Also, it has been shown that the contact damping, on the one hand, reduces the amplitude and mean value of vibrations and, on the other hand, when this coefficient increases the input force increases and the mean value of vibration increases as well.

References

  1. 1.
    H. Schönherr, Z. Hruska, G.J. Vancso, Macromolecules 33, 4532 (2000)ADSCrossRefGoogle Scholar
  2. 2.
    S.H. Kim, C. Marmo, G.A. Somorjai, Biomaterials 22, 3285 (2001)CrossRefGoogle Scholar
  3. 3.
    B. Cappella, S.K. Kaliappan, H. Sturm, Macromolecules 38, 1874 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    L. Qian, Y. Guan, B. He, H. Xiao, Polymer 49, 2471 (2008)CrossRefGoogle Scholar
  5. 5.
    D. Tranchida et al., Meas. Sci. Technol. 20, 095702 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    A. Vinckier, G. Semenza, FEBS Lett. 430, 12 (1998)CrossRefGoogle Scholar
  7. 7.
    M. Radmacher, IEEE Eng. Med. Biol. 16, 47 (1997)CrossRefGoogle Scholar
  8. 8.
    L.S. Shlyakhtenko et al., Ultramicroscopy 97, 279 (2003)CrossRefGoogle Scholar
  9. 9.
    W.R. Bowen, R.W. Lovitt, C.J. Wright, Biotechnol. Lett. 22, 893 (2000)CrossRefGoogle Scholar
  10. 10.
    M.A. Meyers et al., Prog. Mater. Sci. 53, 1 (2008)CrossRefGoogle Scholar
  11. 11.
    D. Toker et al., Phys. Rev. B 68, 041403 (2003)ADSCrossRefGoogle Scholar
  12. 12.
    Y. Ding et al., Electrochem. Commun. 12, 10 (2010)CrossRefGoogle Scholar
  13. 13.
    J. Liang et al., Carbon 47, 922 (2009)CrossRefGoogle Scholar
  14. 14.
    H. Bai, C. Li, G. Shi, Adv. Mater. 23, 1089 (2011)CrossRefGoogle Scholar
  15. 15.
    Y. Wang, T.H. Hahn, Compos. Sci. Technol. 67, 92 (2007)CrossRefGoogle Scholar
  16. 16.
    P. Lysaght et al., J. Non-Cryst. Solids 303, 54 (2002)ADSCrossRefGoogle Scholar
  17. 17.
    K. Kawamura et al., Appl. Phys. B 71, 119 (2000)ADSCrossRefGoogle Scholar
  18. 18.
    X.-B. Lu et al., J. Appl. Phys. 94, 1229 (2003)ADSCrossRefGoogle Scholar
  19. 19.
    T. Tanaka, G. Montanari, R. Mulhaupt, IEEE Trans. Dielectr. Electr. Insul. 11, 763 (2004)CrossRefGoogle Scholar
  20. 20.
    W. Jiang, M. Atzmon, J. Mater. Res. 18, 755 (2003)ADSCrossRefGoogle Scholar
  21. 21.
    U. Ramamurty, S. Jana, Y. Kawamura, K. Chattopadhyay, Acta Mater. 53, 705 (2005)CrossRefGoogle Scholar
  22. 22.
    P. Sharma et al., Nanotechnology 18, 035302 (2007)ADSCrossRefGoogle Scholar
  23. 23.
    J. Chu et al., Appl. Phys. Lett. 90, 034101 (2007)ADSCrossRefGoogle Scholar
  24. 24.
    Y. Kim et al., Appl. Phys. Lett. 65, 2136 (1994)ADSCrossRefGoogle Scholar
  25. 25.
    B. Lee, R.E. Rudd, Phys. Rev. B 75, 195328 (2007)ADSCrossRefGoogle Scholar
  26. 26.
    C. Mi et al., Phys. Rev. B 77, 075425 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    R.E. Miller, V.B. Shenoy, Nanotechnology 11, 139 (2000)ADSCrossRefGoogle Scholar
  28. 28.
    R.E. Rudd, B. Lee, Mol. Simul. 34, 1 (2008)CrossRefGoogle Scholar
  29. 29.
    V.B. Shenoy, Phys. Rev. B 71, 094104 (2005)ADSCrossRefGoogle Scholar
  30. 30.
    A.C. Eringen, J. Appl. Phys. 54, 4703 (1983)ADSCrossRefGoogle Scholar
  31. 31.
    M. Aydogdu, Physica E 41, 1651 (2009)ADSCrossRefGoogle Scholar
  32. 32.
    J. Reddy, Int. J. Eng. Sci. 45, 288 (2007)CrossRefGoogle Scholar
  33. 33.
    J. Reddy, Int. J. Eng. Sci. 48, 1507 (2010)CrossRefGoogle Scholar
  34. 34.
    C. Wang, Y. Zhang, X. He, Nanotechnology 18, 105401 (2007)ADSCrossRefGoogle Scholar
  35. 35.
    J.N. Reddy, S. El-Borgi, J. Romanoff, Int. J. Non-linear Mech. 67, 308 (2014)ADSCrossRefGoogle Scholar
  36. 36.
    S.H. Hashemi, H.B. Khaniki, Int. J. Eng.-Trans. B 29, 688 (2016)Google Scholar
  37. 37.
    M. Simşek, H. Yurtcu, Compos. Struct. 97, 378 (2013)CrossRefGoogle Scholar
  38. 38.
    H.-T. Thai, Int. J. Eng. Sci. 52, 56 (2012)CrossRefGoogle Scholar
  39. 39.
    M. Ghadiri, N. Shafiei, H. Safarpour, Microsyst. Technol. 23, 1045 (2017)CrossRefGoogle Scholar
  40. 40.
    X. Zhu, L. Li, Compos. Struct. 178, 87 (2017)CrossRefGoogle Scholar
  41. 41.
    L. Li, Y. Hu, Compos. Struct. 172, 242 (2017)CrossRefGoogle Scholar
  42. 42.
    A. Besseghier et al., Adv. Nano Res. 3, 29 (2015)CrossRefGoogle Scholar
  43. 43.
    A. Daneshmehr, A. Rajabpoor, A. Hadi, Int. J. Eng. Sci. 95, 23 (2015)CrossRefGoogle Scholar
  44. 44.
    F. Ebrahimi, M.R. Barati, Iran. J. Sci. Technol. Trans. Mech. Eng. 40, 243 (2016)CrossRefGoogle Scholar
  45. 45.
    A. Daneshmehr, A. Rajabpoor, Int. J. Eng. Sci. 82, 84 (2014)CrossRefGoogle Scholar
  46. 46.
    S. Sahmani, M. Aghdam, Int. J. Mech. Sci. 122, 129 (2017)CrossRefGoogle Scholar
  47. 47.
    S. Sahmani, M. Aghdam, Composites Part B 114, 404 (2017)CrossRefGoogle Scholar
  48. 48.
    A. Farajpour, A. Rastgoo, M. Farajpour, Compos. Struct. 180, 179 (2017)CrossRefGoogle Scholar
  49. 49.
    D. Kumar, C. Kumar, M.M. Lateefi, Proc. Comput. Sci. 133, 668 (2018)CrossRefGoogle Scholar
  50. 50.
    C.F.T. Matt, Appl. Math. Model. 37, 9338 (2013)MathSciNetCrossRefGoogle Scholar
  51. 51.
    P. Kim, S. Bae, J. Seok, Int. J. Mech. Sci. 64, 232 (2012)CrossRefGoogle Scholar
  52. 52.
    C.W.S. To, J. Sound Vib. 83, 445 (1982)ADSCrossRefGoogle Scholar
  53. 53.
    A. Nikolić, Arch. Appl. Mech. 87, 1227 (2017)ADSCrossRefGoogle Scholar
  54. 54.
    S. Hirsekorn, Appl. Phys. A 66, S249 (1998)ADSCrossRefGoogle Scholar
  55. 55.
    A. Farrokh Payam, M. Fathipour, Int. J. Adv. Manufact. Technol. 65, 957 (2013)CrossRefGoogle Scholar
  56. 56.
    Y. Song, B. Bhushan, in Applied Scanning Probe Methods V: Scanning Probe Microscopy Techniques, edited by B. Bhushan, S. Kawata, H. Fuchs (Springer, Berlin, Heidelberg, 2007) p. 149Google Scholar
  57. 57.
    U. Rabe, in Applied Scanning Probe Methods II (Springer, 2006) p. 37Google Scholar
  58. 58.
    G.J. Verbiest, M.J. Rost, Ultramicroscopy 171, 70 (2016)CrossRefGoogle Scholar
  59. 59.
    X. Zhou, P. Wen, F. Li, Acta Mech. Solida Sin. 30, 520 (2017)CrossRefGoogle Scholar
  60. 60.
    S. Dastjerdi, M. Abbasi, Ultramicroscopy 196, 33 (2019)CrossRefGoogle Scholar
  61. 61.
    L. Haw-Long, C. Win-Jin, Jpn. J. Appl. Phys. 51, 035202 (2012)ADSCrossRefGoogle Scholar
  62. 62.
    W.-J. Chang, H.-L. Lee, Y.-C. Yang, Microsc. Microanal. 20, 878 (2014)CrossRefGoogle Scholar
  63. 63.
    M. Sajjadi, H.N. Pishkenari, G. Vossoughi, Ultramicroscopy 182, 99 (2017)CrossRefGoogle Scholar
  64. 64.
    A. Farokh Payam, M. Fathipour, Micron 70, 50 (2015)CrossRefGoogle Scholar
  65. 65.
    M. Abbasi, A.K. Mohammadi, Stroj. Vestn.-J. Mech. Eng. 60, 179 (2014)CrossRefGoogle Scholar
  66. 66.
    M. Namvar, M. Ghadiri, E. Rezaei, Wave. Random Complex 28, 1 (2018)CrossRefGoogle Scholar
  67. 67.
    I. Elishakoff, Struct. Saf. 4, 255 (1987)CrossRefGoogle Scholar
  68. 68.
    I. Elishakoff, R. Santoro, Arch. Appl. Mech. 84, 355 (2014)ADSCrossRefGoogle Scholar
  69. 69.
    S.H. Crandall, A. Yildiz, J. Appl. Mech. 29, 267 (1962)ADSCrossRefGoogle Scholar
  70. 70.
    R.G. Jacquot, J. Sound Vib. 234, 441 (2000)ADSCrossRefGoogle Scholar
  71. 71.
    I. Elishakoff, Y.K. Lin, L.P. Zhu, Comput. Method. Appl. Mech. 121, 59 (1995)CrossRefGoogle Scholar
  72. 72.
    A.C. Eringen, J. Appl. Mech. 24, 46 (1957)MathSciNetGoogle Scholar
  73. 73.
    I. Elishakoff, D. Livshits, Int. J. Eng. Sci. 22, 1291 (1984)CrossRefGoogle Scholar
  74. 74.
    X.J. Li, Appl. Mech. Mater. 518, 120 (2014)ADSCrossRefGoogle Scholar
  75. 75.
    S.H. Zibdeh, S.H. Juma, J. Sound Vib. 223, 741 (1999)ADSCrossRefGoogle Scholar
  76. 76.
    P. Śniady, J. Sound Vib. 131, 91 (1989)ADSCrossRefGoogle Scholar
  77. 77.
    L. Frýba, J. Sound Vib. 46, 323 (1976)ADSCrossRefGoogle Scholar
  78. 78.
    J.K. Knowles, J. Appl. Mech. 37, 1192 (1970)ADSCrossRefGoogle Scholar
  79. 79.
    G. Ricciardi, J. Eng. Mech. 120, 2361 (1994)CrossRefGoogle Scholar
  80. 80.
    H.S. Zibdeh, M. Abu-Hilal, Eng. Struct. 25, 397 (2003)CrossRefGoogle Scholar
  81. 81.
    P. Śniady, J. Sound Vib. 97, 23 (1984)ADSCrossRefGoogle Scholar
  82. 82.
    R. Iwankiewicz, P. Śniady, J. Struct. Mech. 12, 13 (1984)CrossRefGoogle Scholar
  83. 83.
    S. Fallahzadeh Rastehkenari, Microsyst. Technol. 25, 691 (2018)CrossRefGoogle Scholar
  84. 84.
    D. Karlicic, Non-local Structural Mechanics (John Wiley & Sons, 2015)Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.KN Toosi University of TechnologyTehranIran
  2. 2.Faculty of Technical & EngineeringImam Khomeini International UniversityQazvinIran

Personalised recommendations