Advertisement

Applying quantum supersymmetry and perturbation theory to the energy-dependent Hulthén potential

  • Elhadj HocineEmail author
  • Rabia Yekken
  • Roland Lombard
Regular Article

Abstract.

We deal with the energy-dependent Hulthén potential, by using the supersymmetric quantum mechanics and the first-order perturbation theory. We consider the Hulthén potential linearly dependent on the energy which is introduced in the coupling constant. We evaluate the energy eigenvalues and the corresponding reduced radial eigenfunctions. We compare the analytical results with the numerical solutions of the Schrödinger equation in the energy-dependent and the energy-independent cases. We then investigate the screening effect in order to determine the critical screening parameter values for each state. After that, we look into the absorption oscillator strengths for different transitions.

References

  1. 1.
    V.A. Rizov, H. Sazdjian, I.T. Todorov, Ann. Phys. 165, 59 (1985)ADSCrossRefGoogle Scholar
  2. 2.
    W. Pauli, Zur Quantenmechanik des magnetischen Elektrons (Vieweg+Teubner Verlag, Wiesbaden, 1988) pp. 282--305CrossRefGoogle Scholar
  3. 3.
    H.A. Bethe, E. Salpeter, Quantum Mechanics of One-and Two-Electron Atoms (Springer Science & Business Media, 2012)Google Scholar
  4. 4.
    M. Singh, R. Kharab, Nucl. Phys. A 897, 198 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    R.J. Lombard, J. Mareš, C. Volpe, J. Phys. G 34, 1879 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    R.J. Lombard, J. Mareš, Phys. Lett. A 373, 426 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    M.D. Sanctis, P. Quintero, Eur. Phys. J. A 39, 145 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    M. Jaulent, C. Jean, Commun. Math. Phys. 28, 177 (1972)ADSCrossRefGoogle Scholar
  9. 9.
    M. Jaulent, C. Jean, Ann. Inst. Henri Poincaré, Sect. A 25, 105 (1976)Google Scholar
  10. 10.
    C.V. der Mee, V. Pivovarchik, J. Math. Phys. 42, 158 (2001)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    A. Benchikha, L. Chetouani, Mod. Phys. Lett. A 28, 1350079 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    A. Benchikha, L. Chetouani, Cent. Eur. J. Phys. 12, 392 (2014)Google Scholar
  13. 13.
    A.I. Budaca, R. Budaca, Eur. Phys. J. Plus 134, 145 (2019)CrossRefGoogle Scholar
  14. 14.
    A.I. Budaca, R. Budaca, Phys. Scr. 92, 084001 (2017)ADSCrossRefGoogle Scholar
  15. 15.
    R. Budaca, Eur. Phys. J. A 52, 314 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    V.I. Belyavskii, M.V. Gol’dfarb, Y.V. Kopaev, Semiconductors 31, 936 (1997)ADSCrossRefGoogle Scholar
  17. 17.
    B.S. Pavlov, A.V. Strepetov, Theor. Math. Phys. 90, 152 (1992)CrossRefGoogle Scholar
  18. 18.
    J. Formánek, R.J. Lombard, J. Mareš, Czech. J. Phys. 54, 289 (2004)ADSCrossRefGoogle Scholar
  19. 19.
    E. Witten, Nucl. Phys. B 188, 513 (1981)ADSCrossRefGoogle Scholar
  20. 20.
    F. Cooper, A. Khare, U. Sukhatme, Phys. Rep. 251, 267 (1995)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    E. Schrödinger, Proc. R. Irish Acad. Sect. A 46, 9 (1940)Google Scholar
  22. 22.
    E. Schrödinger, Proc. R. Irish Acad. Sect. A 46, 183 (1940)Google Scholar
  23. 23.
    L. Infeld, T.E. Hull, Rev. Mod. Phys. 23, 21 (1951)ADSCrossRefGoogle Scholar
  24. 24.
    G. Darboux, (1882)Google Scholar
  25. 25.
    A.A. Andrianov, N.V. Borisov, M.V. Ioffe, Phys. Lett. A 105, 19 (1984)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    L.E. Gendenshtein, JETP Lett. 38, 356 (1983) (Pisma Zh. Eksp. Teor. Fiz. 38ADSGoogle Scholar
  27. 27.
    R. Yekken, M. Lassaut, R.J. Lombard, Ann. Phys. 338, 195 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    C.S. Lam, Y.P. Varshni, Phys. Rev. A 4, 1875 (1971)ADSCrossRefGoogle Scholar
  29. 29.
    B. Durand, L. Durand, Phys. Rev. D 23, 1092 (1981)ADSCrossRefGoogle Scholar
  30. 30.
    R.L. Hall, Phys. Rev. A 32, 14 (1985)ADSCrossRefGoogle Scholar
  31. 31.
    T. Tietz, J. Chem. Phys. 35, 1917 (1961)ADSCrossRefGoogle Scholar
  32. 32.
    K. Szalewicz, J.H. Monkhorst, J. Chem. Phys. 75, 5785 (1981)ADSCrossRefGoogle Scholar
  33. 33.
    G. Malli, Chem. Phys. Lett. 26, 578 (1981)ADSCrossRefGoogle Scholar
  34. 34.
    J. Lindhard, P.G. Hansen, Phys. Rev. Lett. 57, 965 (1986)ADSCrossRefGoogle Scholar
  35. 35.
    I.S. Bitensky, V.K. Ferleger, I.A. Wojciechowski, Nucl. Instrum. Methods Phys. Res. Sect. B 125, 201 (1997)ADSCrossRefGoogle Scholar
  36. 36.
    C.S. Jia, J.Y. Wang, S. He, L.T. Sun, J. Phys. A 33, 6993 (2000)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    P. Pyykkö, J. Jokisaari, Chem. Phys. 10, 293 (1975)CrossRefGoogle Scholar
  38. 38.
    L. Hulthén, Ark. Mat. Astron. Fys. 28, 5 (1942)MathSciNetGoogle Scholar
  39. 39.
    S. Flügge, Practical Quantum Mechanics (Springer Science & Business Media, 2012)Google Scholar
  40. 40.
    E.D. Filho, R.M. Ricotta, Mod. Phys. Lett. A 10, 1613 (1995)ADSCrossRefGoogle Scholar
  41. 41.
    A.Z. Tang, F.T. Chan, Phys. Rev. A 35, 911 (1987)ADSCrossRefGoogle Scholar
  42. 42.
    Y.P. Varshni, Phys. Rev. A 41, 4682 (1990)ADSMathSciNetCrossRefGoogle Scholar
  43. 43.
    R.L. Greene, C. Aldrich, Phys. Rev. A 14, 2363 (1976)ADSCrossRefGoogle Scholar
  44. 44.
    O. Bayrak, G. Kocak, I. Boztosun, J. Phys. A 39, 11521 (2006)ADSMathSciNetCrossRefGoogle Scholar
  45. 45.
    A. Diaf, M. Lassaut, R.J. Lombard, Rom. J. Phys. 57, 159 (2012)Google Scholar
  46. 46.
    R. Yekken, R.J. Lombard, J. Phys. A 43, 125301 (2010)ADSMathSciNetCrossRefGoogle Scholar
  47. 47.
    C. Eckart, Phys. Rev. 35, 1303 (1930)ADSCrossRefGoogle Scholar
  48. 48.
    W. Lucha, F.F. Schöberl, Int. J. Mod. Phys. C 10, 607 (1999)ADSCrossRefGoogle Scholar
  49. 49.
    E. Hairer, S.P. Nørsett, G. Wanner, Solving Ordinary Differential Equations: Nonstiff Problems, in Springer Series in Computational Mathematics, Vol. 8 (Springer-Verlag, Berlin, Heidelberg, 1993)  https://doi.org/10.1007/978-3-540-78862-1
  50. 50.
    R. Yekken, Du spectre au potentiel étude du problème inverse dans le cas des états discrets avec extension aux potentiels dépendant de l’énergie, PhD Thesis, Université des sciences et de la technologie Houari Boumediene (2009)Google Scholar
  51. 51.
    M. Demiralp, Appl. Math. Comput. 168, 1380 (2005)MathSciNetGoogle Scholar
  52. 52.
    S.H. Patil, J. Phys. A 17, 575 (1984)ADSCrossRefGoogle Scholar
  53. 53.
    W. Demtröder, Laser Spectroscopy: Basic Concepts and Instrumentation (Springer Science & Business Media, 2013)Google Scholar
  54. 54.
    A. Lindgård, S.E. Nielsen, Atom. Data Nucl. Data Tables 19, 533 (1977)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Département de Physique Théorique, Faculté de PhysiqueUniversité des Sciences et de la Technologie Houari BoumedienneAlgerAlgeria
  2. 2.Groupe de Physique Théorique, Institut de Physique Nucléaire, IN2P3 - CNRSUniversité Paris-Sud 11Orsay CedexFrance

Personalised recommendations