Advertisement

A comparison for the non-classical plate model based on axial buckling of single-layered graphene sheets

  • A. M. FattahiEmail author
  • B. Safaei
  • N. A. Ahmed
Regular Article
  • 1 Downloads

Abstract.

In this study, the size effect on the axial buckling behavior of single-layered graphene sheets embedded in elastic foundation is studied. Eringen’s non-local elasticity equations are incorporated into first-order shear deformation, higher-order shear deformation, and classical plate theories. Values of Winkler and Pasternak moduli parameters, side lengths of square SLGSs, non-local parameter and mode numbers are obtained from different non-local plate theories. It is shown that the axial buckling behavior is strongly dependent on non-local parameters and moduli which are different for different numbers and side lengths. Furthermore, we find that non-locality is more influential in first-order shear deformation than other non-local plate theories, especially in certain ranges of non-local parameters. Sensitivity indices are determined based on the Sobol method in their corresponding physical ranges.

References

  1. 1.
    S. Kitipornchai, X.Q. He, K.M. Liew, Phys. Rev. B 72, 075443 (2005)ADSCrossRefGoogle Scholar
  2. 2.
    K.M. Liew, X.Q. He, S. Kitipornchai, Acta Mater. 54, 4229 (2006)CrossRefGoogle Scholar
  3. 3.
    K. Behfar, R. Naghdabadi, Compos. Sci. Technol. 65, 1159 (2005)CrossRefGoogle Scholar
  4. 4.
    Z. Huang, Z. Qin, F. Chu, Compos. Struct. 153, 96 (2016)CrossRefGoogle Scholar
  5. 5.
    Z. Huang, Z. Qin, F. Chu, J. Sandw. Struct. Mater. 18, 531 (2016)CrossRefGoogle Scholar
  6. 6.
    Z. Huang, Z. Qin, F. Chu, J. Vib. Control 22, 1876 (2016)MathSciNetCrossRefGoogle Scholar
  7. 7.
    J. Peddieson, G.R. Buchanan, R.P. McNitt, Int. J. Eng. Sci. 41, 305 (2003)CrossRefGoogle Scholar
  8. 8.
    S. Sahmani, A.M. Fattahi, Mater. Res. Express 4, 1 (2017)CrossRefGoogle Scholar
  9. 9.
    H.S. Shen, J. Theor. Biol. 264, 386 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    S. Sahmani, A.M. Fattahi, Comput. Method Appl. Mech. Eng. 322, 187 (2017)ADSCrossRefGoogle Scholar
  11. 11.
    S. Filiz, M. Aydogdu, Comput. Mater. Sci. 49, 619 (2010)CrossRefGoogle Scholar
  12. 12.
    L. Shen, H.S. Shen, C.L. Zhang, Comput. Mater. Sci. 48, 680 (2010)CrossRefGoogle Scholar
  13. 13.
    B. Safaei, A.M. Fattahi, Mechanics 23, 678 (2017)Google Scholar
  14. 14.
    J. Yang, L.L. Ke, S. Kitipornchai, Physica E 42, 1727 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    M.J. Hao, X.M. Guo, Q. Wang, Eur. J. Mech. A/Solids 29, 49 (2010)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    M. Alizadeh, A.M. Fattahi, Eng. Comput. 35, 215 (2018)CrossRefGoogle Scholar
  17. 17.
    K. Kiani, Int. J. Mech. Sci. 52, 1343 (2010)CrossRefGoogle Scholar
  18. 18.
    A.M. Zenkour, Eur. Phys. J. Plus 133, 193 (2018)CrossRefGoogle Scholar
  19. 19.
    S. Sahmani, A.M. Fattahi, J. Mol. Graph Modell. 75, 20 (2017)CrossRefGoogle Scholar
  20. 20.
    A.M. Fattahi, S. Sahmani, Microsyst. Technol. 23, 5121 (2017)CrossRefGoogle Scholar
  21. 21.
    M.F. Chen, G.Y. Jin, Y.T. Zhang, F.L. Niu, Z.G. Liu, Compos. Struct. 207, 304 (2019)CrossRefGoogle Scholar
  22. 22.
    Y.K. Chen, G.Y. Jin, C.Y. Zhang, T.G. Ye, Y.Q. Xue, Compos. Part B Eng. 153, 376 (2018)CrossRefGoogle Scholar
  23. 23.
    A.M. Fattahi, S. Sahmani, Arab. J. Sci. Eng. 42, 4617 (2017)MathSciNetCrossRefGoogle Scholar
  24. 24.
    E. Winkler, Theory of Elasticity and Strength (H. Dominicus, Prague, 1867)Google Scholar
  25. 25.
    P.L. Pasternak, On a new method of analysis of an elastic foundation by means of two foundation constants, in Gosudarstvennoe Izdatelstro Liberaturi po Stroitelstvui Arkhitekture (Moscow, Russia, 1954)Google Scholar
  26. 26.
    K.M. Liew, X.Q. He, S. Kitipornchai, Acta Mater. 54, 4229 (2006)CrossRefGoogle Scholar
  27. 27.
    S.C. Pradhan, T. Murmu, Physica E 42, 1293 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    S. Azizi, B. Safaei, A.M. Fattahi, M. Tekere, Adv. Mater. Sci. Eng. 2015, 318539 (2015)CrossRefGoogle Scholar
  29. 29.
    R. Moradi-Dastjerdi, G. Payganeh, M. Tajdari, Polym. Compos. 38, E542 (2017)CrossRefGoogle Scholar
  30. 30.
    R. Moradi-Dastjerdi, G. Payganeh, M. Tajdari, Polym. Compos. 39, 2190 (2018)CrossRefGoogle Scholar
  31. 31.
    Z. Qin, X. Pang, B. Safaei, F. Chu, Compos. Struct. 220, 847 (2019)CrossRefGoogle Scholar
  32. 32.
    R. Moradi-Dastjerdi, H. Malek-Mohammadi, H. Momeni-Khabisi, Z. Angew. Math. Mech. 97, 1418 (2017)Google Scholar
  33. 33.
    Z. Qin, Z. Yang, J. Zu, F. Chu, Int. J. Mech. Sci. 142-143, 127 (2018)CrossRefGoogle Scholar
  34. 34.
    Z. Qin, F. Chu, Z. Jean, Int. J. Mech. Sci. 133, 91 (2017)CrossRefGoogle Scholar
  35. 35.
    R. Shokri-Oojghaz, R. Moradi-Dastjerdi, H. Mohammadi, K. Behdinan, Polym. Compos. 40, E1918 (2019)CrossRefGoogle Scholar
  36. 36.
    B. Safaei, R. Moradi-Dastjerdi, F. Chu, Compos. Struct. 192, 28 (2018)CrossRefGoogle Scholar
  37. 37.
    B. Safaei, R. Moradi-Dastjerdi, Z. Qin, F. Chu, Compos. Part B Eng. 161, 44 (2019)CrossRefGoogle Scholar
  38. 38.
    B. Safaei, R. Moradi-Dastjerdi, Z. Qin, K. Behdina, F. Chu, J. Sandw. Struct. Mater. (2019)  https://doi.org/10.1177/1099636219848282
  39. 39.
    A. Bouadi, Anis, A.A. Bousahla, M.S.A. Houari, H. Heireche, A. Tounsi, Adv. Nano Res. 6, 147 (2018)Google Scholar
  40. 40.
    F. Ebrahimi, M.R. Barati, Struct. Eng. Mech. 67, 143 (2018)Google Scholar
  41. 41.
    T.H. Daouadji, B. Adim, Struct. Eng. Mech. 61, 49 (2017)CrossRefGoogle Scholar
  42. 42.
    M. Malikan, J. Appl. Comput. Mech. 4, 1 (2018)Google Scholar
  43. 43.
    M. Malikan, Appl. Math. Model. 48, 196 (2017)MathSciNetCrossRefGoogle Scholar
  44. 44.
    B. Safaei, P. Naseradinmousavi, A. Rahmani, J. Mol. Graph Modell. 65, 43 (2016)CrossRefGoogle Scholar
  45. 45.
    A.M. Fattahi, B. Safaei, Microsyst. Technol. 23, 5079 (2017)CrossRefGoogle Scholar
  46. 46.
    M. Malikan, M. Jabbarzadeh, S. Dastjerdi, Microsyst. Technol. 23, 2973 (2017)CrossRefGoogle Scholar
  47. 47.
    M.E. Golmakani, M. Malikan, M.N. Sadraee Far, H.R. Majidi, Mater. Res. Express 5, 065010 (2018)ADSCrossRefGoogle Scholar
  48. 48.
    M. Malikan, V.B. Nguyen, F. Tornabene, Eng. Sci. Technol. 21, 778 (2018)Google Scholar
  49. 49.
    Y.Q. Xue, G.Y. Jin, H. Ding, M.F. Chen, Compos. Struct. 192, 193 (2018)CrossRefGoogle Scholar
  50. 50.
    Q. Wang, D. Shi, Q. Liang, X. Shi, Compos. Part B Eng. 88, 264 (2016)CrossRefGoogle Scholar
  51. 51.
    T. Liu, G. Hu, A. Wang, Q. Wang, Appl. Acoust. 155, 407 (2019)CrossRefGoogle Scholar
  52. 52.
    M. Malikan, J. Appl. Comput. Mech. 5, 103 (2019)Google Scholar
  53. 53.
    M.E. Golmakani, M.N. Sadraee Far, Microsyst. Technol. 23, 2145 (2017)CrossRefGoogle Scholar
  54. 54.
    B. Safaei, N.A. Ahmed, A.M. Fattahi, Eur. Phys. J. Plus 134, 271 (2019)CrossRefGoogle Scholar
  55. 55.
    B. Safaei, A.M. Fattahi, F. Chu, Microsyst. Technol. 24, 2663 (2018)CrossRefGoogle Scholar
  56. 56.
    S. Azizi, A.M. Fattahi, J.T. Kahnamouei, Comput. Theor. Nanosc. 12, 4179 (2015)CrossRefGoogle Scholar
  57. 57.
    S. Roozpeikar, A.M. Fattahi, SN Appl. Sci. 1, 17 (2018)CrossRefGoogle Scholar
  58. 58.
    B. Safaei, Farzad Hamed Khoda, A.M. Fattahi, Adv. Nano Res. 7, 267 (2019)Google Scholar
  59. 59.
    B. Safaei, R. Moradi-Dastjerdi, K. Behdinan, F. Chu, Aerospace Sci. Technol. 91, 175 (2019)CrossRefGoogle Scholar
  60. 60.
    A.C. Eringen, Int. J. Eng. Sci. 10, 425 (1972)MathSciNetCrossRefGoogle Scholar
  61. 61.
    I.M. Sobol, Math. Comput. Simul. 55, 271 (2001)CrossRefGoogle Scholar
  62. 62.
    G. Kirchhoff, Mathematik 40, 51 (1850)Google Scholar
  63. 63.
    J.N. Reddy, J. Appl. Mech. 51, 745 (1984)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mechanical Engineering Science, Faculty of Engineering and Built EnvironmentUniversity of JohannesburgJohannesburgSouth Africa
  2. 2.Department of Mechanical EngineeringTsinghua UniversityBeijingChina

Personalised recommendations