Advertisement

Vibration analysis of rotating composite blades with piezoelectric layers in hygrothermal environment

  • Zahra ArabjamaloeiEmail author
  • Mohammadreza Mofidi
  • Mohammad Hosseini
  • Reza Bahaadini
Regular Article
  • 6 Downloads

Abstract.

In this study, vibration of a rotating composite blade with piezoelectric layers subjected to a tip mass in hygrothermal environment is investigated. The general composite equations for the single layer materials are expanded under varying temperature and humidity concentrations. The governing equations are derived based on the Hamilton principle based on the Euler-Bernoulli beam theory. Applying Galerkin’s procedure, the resulting equations are converted into a set of eigenvalue equations. The effects of temperature, humidity, angular velocity, fiber orientation angle, voltage and piezoelectric layers on the natural frequency of system are explored. The results show that by increasing the angular velocity, the natural frequencies increases. It was also found that increasing temperature and humidity causes a drop in the non-dimensional natural frequency. Besides, it can be concluded that heat and humidity have significant effects on the natural frequency of rotating composite blades. Applying positive and negative voltages results in a raise and drop in the natural frequency, respectively. It was also found that as the angular velocity of the composite beam increases, the non-dimensional natural frequency decreases. Furthermore, the lowest natural frequency is achieved when the tip mass is located at the end of the beam. The results show that as the fiber orientation angle increases, the natural frequencies increase which is related to enhancing the bending stiffness of the composite blades.

References

  1. 1.
    S.Y. Oh, O. Song, L. Librescu, Int. J. Solids Struct. 40, 1203 (2003)CrossRefGoogle Scholar
  2. 2.
    M. Tahani, Mater. Des. 27, 976 (2006)CrossRefGoogle Scholar
  3. 3.
    B. Jiang, J. Xu, Y. Li, Compos. Struct. 117, 201 (2014)CrossRefGoogle Scholar
  4. 4.
    Y. Qin, X. Li, E. Yang, Y. Li, Compos. Struct. 153, 490 (2016)CrossRefGoogle Scholar
  5. 5.
    L. Librescu, O. Song, Thin-Walled Composite Beams: Theory and Application, Vol. 131 (Springer Science & Business Media, 2005)Google Scholar
  6. 6.
    N. Roy, R. Ganguli, J. Sound Vib. 283, 821 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    J.H. Park, H.Y. Park, S.Y. Jeong, S.I. Lee, Y.H. Shin, J.-P. Park, Curr. Appl. Phys. 10, S332 (2010)CrossRefGoogle Scholar
  8. 8.
    M. Schilhansl, J. Appl. Mech. 25, 28 (1958)MathSciNetGoogle Scholar
  9. 9.
    H.H. Yoo, S.H. Shin, J. Sound Vib. 212, 807 (1998)ADSCrossRefGoogle Scholar
  10. 10.
    H.H. Yoo, S.H. Lee, S.H. Shin, J. Sound Vib. 286, 745 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    S.H. Lee, S.H. Shin, H.H. Yoo, KSME Int. J. 18, 240 (2004)CrossRefGoogle Scholar
  12. 12.
    C. De Valve, R. Pitchumani, Compos. Struct. 110, 289 (2014)CrossRefGoogle Scholar
  13. 13.
    E. Carrera, M. Filippi, E. Zappino, Compos. Struct. 106, 317 (2013)CrossRefGoogle Scholar
  14. 14.
    R. Bahaadini, M.R. Dashtbayazi, M. Hosseini, Z. Khalili-Parizi, Ocean Eng. 160, 311 (2018)CrossRefGoogle Scholar
  15. 15.
    R. Bahaadini, A.R. Saidi, M. Hosseini, Acta Mech. 229, 5013 (2018)MathSciNetCrossRefGoogle Scholar
  16. 16.
    S.A. Fazelzadeh, M. Hosseini, J. Fluids Struct. 23, 1251 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    S.A. Fazelzadeh, P. Malekzadeh, P. Zahedinejad, M. Hosseini, J. Sound Vib. 306, 333 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    R. Bahaadini, A.R. Saidi, Aerospace Sci. Technol. 80, 381 (2018)CrossRefGoogle Scholar
  19. 19.
    R. Bahaadini, A.R. Saidi, Thin-Walled Struct. 132, 604 (2018)CrossRefGoogle Scholar
  20. 20.
    R. Bahaadini, A.R. Saidi, Eur. J. Mech.-A/Solids 72, 298 (2018)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    A.M. Dehrouyeh-Semnani, Int. J. Eng. Sci. 94, 150 (2015)MathSciNetCrossRefGoogle Scholar
  22. 22.
    V.V.S. Rao, P.K. Sinha, Compos. Struct. 64, 329 (2004)CrossRefGoogle Scholar
  23. 23.
    B.P. Patel, M. Ganapathi, D.P. Makhecha, Compos. Struct. 56, 25 (2002)CrossRefGoogle Scholar
  24. 24.
    D. Gayen, T. Roy, Int. J. Compos. Mater. 3, 46 (2013)Google Scholar
  25. 25.
    C.M. Saravia, S.P. Machado, V.H. Cortínez, Eur. J. Mech.-A/Solids 30, 432 (2011)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    H. Arvin, F. Bakhtiari-Nejad, Compos. Struct. 96, 121 (2013)CrossRefGoogle Scholar
  27. 27.
    R. Bahaadini, A.R. Saidi, Eur. J. Mech.-A/Solids 85, 285 (2019)CrossRefGoogle Scholar
  28. 28.
    F. Ebrahimi, A. Dabbagh, Eur. Phys. J. Plus 132, 153 (2017)CrossRefGoogle Scholar
  29. 29.
    A.K. Singh, S. Koley, A. Negi, A. Ray, Eur. Phys. J. Plus 134, 95 (2019)CrossRefGoogle Scholar
  30. 30.
    A. Jandaghian, A. Jafari, J. Adv. Des. Manuf. Technol. 5, 1 (2012)Google Scholar
  31. 31.
    A. Alibeigloo, Compos. Struct. 92, 1535 (2010)CrossRefGoogle Scholar
  32. 32.
    S.R. Li, H.D. Su, C.J. Cheng, Appl. Math. Mech. 30, 969 (2009)CrossRefGoogle Scholar
  33. 33.
    Q. Wang, S.T. Quek, Int. J. Solids Struct. 39, 4167 (2002)CrossRefGoogle Scholar
  34. 34.
    M. Hosseini, R. Bahaadini, B. Jamali, J. Vib. Control 24, 1809 (2016)CrossRefGoogle Scholar
  35. 35.
    M. Hosseini, A.Z.B. Maryam, R. Bahaadini, Microfluid. Nanofluid. 21, 134 (2017)CrossRefGoogle Scholar
  36. 36.
    M. Hosseini, R. Bahaadini, Z. Khalili-Parizi, J. Intell. Mater. Syst. Struct. 30, 593 (2019)CrossRefGoogle Scholar
  37. 37.
    R.M. Jones, Mechanics of Composite Materials (CRC Press, 1998)Google Scholar
  38. 38.
    G. Rezazadeh, A. Tahmasebi, M. Zubstov, Microsyst. Technol. 12, 1163 (2006)CrossRefGoogle Scholar
  39. 39.
    R. Bahaadini, A.R. Saidi, M. Hosseini, Int. J. Eng. Sci. 123, 181 (2018)CrossRefGoogle Scholar
  40. 40.
    R. Bahaadini, M. Hosseini, Comput. Mater. Sci. 114, 151 (2016)CrossRefGoogle Scholar
  41. 41.
    M. Hosseini, R. Bahaadini, Int. J. Eng. Sci. 101, 1 (2016)CrossRefGoogle Scholar
  42. 42.
    R. Bahaadini, A.R. Saidi, M. Hosseini, J. Vib. Control 25, 203 (2019)MathSciNetCrossRefGoogle Scholar
  43. 43.
    J.R. Banerjee, J. Sound Vib. 233, 857 (2000)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Zahra Arabjamaloei
    • 1
    Email author
  • Mohammadreza Mofidi
    • 1
  • Mohammad Hosseini
    • 1
  • Reza Bahaadini
    • 2
  1. 1.Department of Mechanical EngineeringSirjan University of TechnologySirjanIran
  2. 2.Department of Mechanical EngineeringShahid Bahonar University of KermanKermanIran

Personalised recommendations