Lump, lumpoff and rogue waves for a (2 + 1)-dimensional reduced Yu-Toda-Sasa-Fukuyama equation in a lattice or liquid

  • Meng Wang
  • Bo TianEmail author
  • Qi-Xing Qu
  • Xia-Xia Du
  • Chen-Rong Zhang
  • Ze Zhang
Regular Article


Lattices and liquids are common in physics, engineering, science, nature and life. The Yu-Toda-Sasa-Fukuyama (YTSF) equation describes the elastic quasiplane wave in a lattice or interfacial wave in a two-layer liquid. A (2 + 1)-dimensional reduced YTSF equation is studied in this paper. With symbolic computation, we get the lump solutions more general than those in the existing literature, which orient in all directions of space and time with more parameters. Via the lump solutions, we get the moving path of lump waves, lumpoff solutions and moving path of the lumpoff waves, which describe interactions between one stripe soliton and a lump wave. When the lump solutions produce the one stripe solitons, the lumpoff solutions are constructed. When a pair of stripe solitons cut lump wave, the rogue wave emerges. Time and place for the rogue wave to appear can be obtained from the coordinates of the interaction points between a pair of stripe solitons and the lump wave.


  1. 1.
    V. Burakov, V. Kiris, M. Nedelko, N. Tarasenka, A. Nevar, J. Appl. Phys. 51, 484001 (2018)Google Scholar
  2. 2.
    A.P. Gaiduk, T.A. Pham, M. Govoni, F. Paesani, G. Galli, Nat. Commun. 9, 247 (2018)ADSCrossRefGoogle Scholar
  3. 3.
    R.B. Lsrael, Convexity in the Theory of Lattice Gases (Princeton University Press, Princeton, 2015)Google Scholar
  4. 4.
    R. Landig, L. Hruby, N. Dogra, M. Landini, R. Mottl, T. Donner, T. Esslinger, Nature 532, 476 (2016)ADSCrossRefGoogle Scholar
  5. 5.
    N. Barnea, L. Contessi, D. Gazit, F. Pederiva, U. Van Kolck, Phys. Rev. Lett. 114, 052501 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    M. Gedalin, T.C. Scott, Y.B. Band, Phys. Rev. Lett. 78, 448 (1997)ADSCrossRefGoogle Scholar
  7. 7.
    A.R. Seadawy, Comput. Math. Appl. 71, 201 (2016)MathSciNetCrossRefGoogle Scholar
  8. 8.
    X.Y. Xie, G.Q. Meng, Nonlinear Dyn. 93, 675 (2018)CrossRefGoogle Scholar
  9. 9.
    X.Y. Xie, G.Q. Meng, Chaos Solitons Fractals 107, 143 (2018)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    N. Akhmediev, A. Ankiewicz, M. Taki, Phys. Lett. A 373, 675 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    L. Stenflo, M. Marklund, J. Plasma Phys. 76, 293 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    Z.Y. Yan, Commun. Theor. Phys. 54, 947 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    D.R. Solli, C. Ropers, P. Koonath, B. Jalali, Nature 450, 1054 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    Y.V. Bludov, V.V. Konotop, N. Akhmediev, Eur. Phys. J. ST 185, 169 (2010)CrossRefGoogle Scholar
  15. 15.
    W.M. Moslem, R. Sabry, S.K. EI-Labany, P.K. Shukla, Phys. Rev. E 84, 066402 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    H. Bailung, S.K. Sharma, Y. Nakamura, Phys. Rev. Lett 107, 255005 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    W.X. Ma, Phys. Lett. A 379, 1975 (2015)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    J.Y. Yang, W.X. Ma, Anal. Math. Phys. 8, 427 (2018)MathSciNetCrossRefGoogle Scholar
  19. 19.
    X. Lü, S.T. Chen, W.X. Ma, Nonlinear Dyn. 86, 523 (2016)CrossRefGoogle Scholar
  20. 20.
    P. Zhang, M. Jia, Chin. Phys. B 27, 120201 (2018)CrossRefGoogle Scholar
  21. 21.
    W.Q. Peng, S.F. Tian, T.T. Zhang, Phys. Lett. A 27, 2701 (2018)ADSCrossRefGoogle Scholar
  22. 22.
    T. Fang, Y.H. Wang, Anal. Math. Phys. 58, 1 (2018)Google Scholar
  23. 23.
    H.M. Yin, B. Tian, J. Chai, X.Y. Wu, W.R. Sun, Appl. Math. Lett. 58, 178 (2016)MathSciNetCrossRefGoogle Scholar
  24. 24.
    A.M. Wazwaz, Appl. Math. Comput. 203, 592 (2008)MathSciNetGoogle Scholar
  25. 25.
    R. Hirota, Y. Ohta, J. Phys. Soc. Jpn. 60, 798 (1991)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Information Photonics and Optical Communications, and School of ScienceBeijing University of Posts and TelecommunicationsBeijingChina
  2. 2.School of InformationUniversity of International Business and EconomicsBeijingChina

Personalised recommendations