Advertisement

Theoretical predictions for photoacoustic signal: Fractionary thermal diffusion with modulated light absorption source

  • Aloisi SomerEmail author
  • Andressa Novatski
  • Ervin Kaminski Lenzi
Regular Article
  • 24 Downloads

Abstract.

We develop a theoretical framework, in the context of the anomalous thermal diffusion, for the photoacoustic signal. We obtain analytical predictions for the open photoacoustic cell technique by considering the thermal diffusion and thermoelastic bending effects. In these contexts, we consider different conditions for the thermal diffusivity, coefficient of optical absorption, the sample thickness and the amplitudes of thermal diffusion and thermoelastic bending contributions. Furthermore, opaque samples are also simulated as a special case of the optically transparent samples.

References

  1. 1.
    A. Rosencwaig, A. Gersho, J. Appl. Phys. 47, 64 (1976)ADSCrossRefGoogle Scholar
  2. 2.
    M. Da Silva, I. Bandeira, L. Miranda, J. Phys. E 20, 1476 (1987)ADSCrossRefGoogle Scholar
  3. 3.
    L.F. Perondi, L.C.M. Miranda, J. Appl. Phys. 62, 2955 (1987)ADSCrossRefGoogle Scholar
  4. 4.
    A. Somer, F. Camilotti, G. Costa, C. Bonardi, A. Novatski, A. Andrade, V. Kozlowski jr., G. Cruz, J. Appl. Phys. 114, 063503 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    F.B.G. Astrath, N. Astrath, M. Baesso, A. Bento, J.C.S. Moraes, A. Santos, J. Appl. Phys. 111, 014701 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    N.G.C. Astrath, F.B. Astrath, J. Shen, C. Lei, J. Zhou, Z. Sheng (Simon) Liu, T. Navessin, M.L. Baesso, A.C. Bento, J. Appl. Phys. 107, 043514 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    D.S. Velasco, M.L. Baesso, A.N. Medina, D.D. Bicanic, R. Koehorst, J.J.J. van der Hooft, A.C. Bento, J. Appl. Phys. 109, 034703 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    A. Calderón, J. Alvarado-Gil, Y.G. Gurevich, A. Cruz-Orea, I. Delgadillo, H. Vargas, L. Miranda, Phys. Rev. Lett. 79, 5022 (1997)ADSCrossRefGoogle Scholar
  9. 9.
    S. Souza, D. Trichês, C. Poffo, J. De Lima, T. Grandi, R. De Biasi, J. Appl. Phys. 109, 013512 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    D.D. Markushev, J. Ordonez-Miranda, M.D. Rabasovi, M. Chirtoc, D.M. Todorovi, S.E. Bialkowski, D. Korte, M. Franko, Eur. Phys. J. Plus 132, 33 (2017)CrossRefGoogle Scholar
  11. 11.
    A. Bedoya, E. Marín, A. Mansanares, M. Zambrano-Arjona, I. Riech, A. Calderón, Thermochim. Acta 614, 52 (2015)CrossRefGoogle Scholar
  12. 12.
    N. Faraji, W.M.M. Yunus, A. Kharazmi, E. Saion, K. Behzad, Int. J. Thermophys. 35, 53 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    S. Engel, C. Wenisch, F. Müller, S. Gräf, Meas. Sci. Technol. 27, 045202 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    M.N. Popovic, M.V. Nesic, M. Zivanov, D.D. Markushev, S.P. Galovic, Opt. Quantum Electron. 50, 330 (2018)CrossRefGoogle Scholar
  15. 15.
    A. Somer, F. Camilotti, G. Costa, A. Jurelo, A. Assmann, G. De Souza, O. Cintho, C. Bonardi, A. Novatski, G. Cruz, J. Phys. D 47, 385306 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    R. Stearns, G. Kino, Appl. Phys. Lett. 47, 1048 (1985)ADSCrossRefGoogle Scholar
  17. 17.
    H.M. Youssef, E.A. Al-Lehaibi, Mech. Res. Commun. 37, 448 (2010)CrossRefGoogle Scholar
  18. 18.
    J. Ignaczak, M. Ostoja-Starzewski, Thermoelasticity with Finite Wave Speeds, in Oxford Mathematical Monographs (OUP Oxford, 2009)Google Scholar
  19. 19.
    M.A. Ezzat, A.S. El-Karamany, A.A. El-Bary, M.A. Fayik, C. R. Mec. 341, 553 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    S. Galovi, D. Kostoski, J. Appl. Phys. 93, 3063 (2003)ADSCrossRefGoogle Scholar
  21. 21.
    M. Nesic, S. Galovic, Z. Soskic, M. Popovic, D.M. Todorovic, Int. J. Thermophys. 33, 2203 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    M. Nesic, M. Popovic, S. Galovic, Atoms 7, 24 (2019)ADSCrossRefGoogle Scholar
  23. 23.
    G. Rousset, F. Lepoutre, L. Bertrand, J. Appl. Phys. 54, 2383 (1983)ADSCrossRefGoogle Scholar
  24. 24.
    C. Cattaneo, Atti Sem. Mat. Fis. Univ. Modena 3, 83 (1948)Google Scholar
  25. 25.
    H. Lord, Y. Shulman, J. Mech. Phys. Solids 15, 299 (1967)ADSCrossRefGoogle Scholar
  26. 26.
    H.H. Sherief, A. El-Sayed, A.A. El-Latief, Int. J. Solids Struct. 47, 269 (2010)CrossRefGoogle Scholar
  27. 27.
    D.D. Markushev, M.D. Rabasović, M. Nesic, M. Popovic, S. Galovic, Int. J. Thermophys. 33, 2210 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    A. Compte, R. Metzler, J. Phys. A 30, 7277 (1997)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    G. Alaimo, V. Piccolo, A. Chiappini, M. Ferrari, D. Zonta, L. Deseri, M. Zingales, J. Eng. Mech. 144, 04017164 (2018)CrossRefGoogle Scholar
  30. 30.
    R. Brociek, D. Słota, M. Król, G. Matula, W. Kwaśny, Fractal Fract. 1, 17 (2017)CrossRefGoogle Scholar
  31. 31.
    L.R. Evangelista, E.K. Lenzi, Fractional Diffusion Equations and Anomalous Diffusion (Cambridge University Press, 2018)Google Scholar
  32. 32.
    M. Zecová, J. Terpák, Math. Probl. Eng. 2015, 753936 (2015)CrossRefGoogle Scholar
  33. 33.
    D. Todorović, M. Rabasović, D. Markushev, M. Sarajlić, J. Appl. Phys. 116, 053506 (2014)ADSCrossRefGoogle Scholar
  34. 34.
    D.M. Todorović, J. Phys. IV 125, 551 (2005)Google Scholar
  35. 35.
    Y.Q. Song, J.T. Bai, Z.Y. Ren, Acta Mech. 223, 1545 (2012)MathSciNetCrossRefGoogle Scholar
  36. 36.
    D. Markushev, J. Ordonez-Miranda, M. Rabasović, S. Galović, D. Todorović, S. Bialkowski, J. Appl. Phys. 117, 245309 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de FísicaUniversidade Estadual de Ponta GrossaPonta GrossaBrazil

Personalised recommendations