Advertisement

Investigating tunable bandwidth cavity via three-level atomic systems

  • Tayebeh NaseriEmail author
  • Masoumeh Hatami-Mehr
Regular Article
  • 7 Downloads

Abstract.

We propose a scheme for intracavity electromagnetically induced transparency and white light cavity via three-level Ladder-type Rb atoms. The system is driven by coherent and incoherent fields. Due to the position dependent atom-field interaction, the tunable optical susceptibility of the probe field can be achieved. By using an incoherent pump field and choosing proper parameters, one can control dispersion behavior of the probe field. In weak probe field limit, cavity bandwidth narrowing and broadening could be controlled via atomic systems in different conditions. Assuming the intracavity electromagnetic-induced transparency and the white light cavity conditions, it’s possible to control the susceptibility to satisfy the resonance condition over a wide frequency range. Tuning and controlling bandwidth of the optical cavity may find interesting applications in investigating cavity-QED phenomena and designing novel all-optical devices such as optical switches.

References

  1. 1.
    K.J. Boller, A. Imamoglu, S.E. Harris, Phys. Rev. Lett. 66, 2593 (1991)ADSCrossRefGoogle Scholar
  2. 2.
    Y. Niu, S. Gong, Phys. Rev. A 73, 053811 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    A. Krishna, K. Pandey, A. Wasan, V. Natarajan, Europhys. Lett. 72, 221 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    J. Wang, H. Liu, B. Yang, J. He, J. Wang, Meas. Sci. Technol. 25, 035501 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    D. Das, V. Natarajan, Europhys. Lett. 72, 740 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    T. Naseri, S.H. Asadpour, R. Sadighi-Bonabi, J. Opt. Soc. Am. B 30, 641 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    X.-M. Hu, G.-L. Cheng, J.-H. Zou, X. Li, D. Du, Phys. Rev. A 72, 023803 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    S.-M. Ma, H. Xu, B.-S. Ham, Opt. Express 17, 14902 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    R. Sadighi-Bonabi, T. Naseri, M. Navadeh-Toupchi, Appl. Opt. 54, 368 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    T. Naseri, R. Sadighi-Bonabi, J. Opt. Soc. Am. B 31, 2430 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    T. Naseri, Superlattices Microstruct. 94, 187 (2016)ADSCrossRefGoogle Scholar
  12. 12.
    T. Naseri, R. Moradi, Superlattices Microstruct. 101, 592 (2017)ADSCrossRefGoogle Scholar
  13. 13.
    W. Leoski, R. Tana, Phys. Rev. A 49, R20 (1994)ADSCrossRefGoogle Scholar
  14. 14.
    A. Imamolu, H. Schmidt, G. Woods, M. Deutsch, Phys. Rev. Lett. 79, 1467 (1997)ADSCrossRefGoogle Scholar
  15. 15.
    W. Leoski, A. Miranowicz, J. Opt. B 6, S37 (2004)ADSCrossRefGoogle Scholar
  16. 16.
    M.K. Olsen, Phys. Rev. A 92, 033627 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    J.K. Kalaga, W. Leoski, R. Szczniak, Quantum Inf. Process. 16, 265 (2017)ADSCrossRefGoogle Scholar
  18. 18.
    M.D. Lukin, M. Fleischhauer, M.O. Scully, V.L. Velichansky, Opt. Lett. 23, 295 (1998)ADSCrossRefGoogle Scholar
  19. 19.
    M. Mücke, E. Figueroa, J. Bochmann, C. Hahn, K. Murr, S. Ritter, C.J. Villas-Boas, G. Rempe, Nature 465, 755 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    F.L. Kien, K. Hakuta, Phys. Rev. A 79, 043813 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    M. Albert, A. Dantan, M. Drewsen, Nat. Photon. 5, 633 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    O. Kotlicki, J. Scheuer, Opt. Lett. 39, 6624 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    J.I. Thorpe, K. Numata, J. Livas, Opt. Express 16, 15980 (2008)ADSCrossRefGoogle Scholar
  24. 24.
    J. Xu, M. Al-Amri, Y. Yang, S. Zhu, M.S. Zubairy, Phys. Rev. A 86, 033828 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    A. Othman, D. Yevick, M. Al-Amri, Phys. Rev. A 97, 043816 (2018)ADSCrossRefGoogle Scholar
  26. 26.
    H.N. Yum, M. Salit, J. Yablon, K. Salit, Y. Wang, M.S. Shahriar, Opt. Express 18, 17658 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    O. Kotlicki, J. Scheuer, M.S. Shahriar, Opt. Express 20, 28234 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    A. Wichta, K. Danzmanna, M. Fleischhauer, M. Scullyc, G. Mullera, R.H. Rinkleff, Opt. Commun. 134, 431 (1997)ADSCrossRefGoogle Scholar
  29. 29.
    M. Salita, G.S. Patia, K. Salit, M.S. Shahriar, J. Mod. Opt. 54, 2425 (2007)ADSCrossRefGoogle Scholar
  30. 30.
    G. Muller, M. Muller, A. Wicht, R.H. Rinkleff, K. Danzmann, Phys. Rev. A 56, 2385 (1997)ADSCrossRefGoogle Scholar
  31. 31.
    H. Wang, D.J. Goorskey, W.H. Burkett, M. Xiao, Opt. Lett. 25, 1732 (2000)ADSCrossRefGoogle Scholar
  32. 32.
    H. Wu, J. Gea-Banacloche, M. Xiao, Phys. Rev. Lett. 100, 173602 (2008)ADSCrossRefGoogle Scholar
  33. 33.
    F.L. Kien, K. Hakuta, Phys. Rev. A 79, 043813 (2009)ADSCrossRefGoogle Scholar
  34. 34.
    J. Sheng, H. Wu, M. Mumba, J. Gea-Banacloche, M. Xiao, Phys. Rev. A 83, 023829 (2011)ADSCrossRefGoogle Scholar
  35. 35.
    R.H. Rinkleff, A. Wicht, Phys. Scr. 118, 85 (2005)CrossRefGoogle Scholar
  36. 36.
    G.S. Pati, M. Messall, K. Salit, M.S. Shahriar, Phys. Rev. Lett. 99, 133601 (2007)ADSCrossRefGoogle Scholar
  37. 37.
    G.S. Pati, M. Salit, K. Salit, M.S. Shahriar, Opt. Commun. 281, 4931 (2008)ADSCrossRefGoogle Scholar
  38. 38.
    R. Fleischhaker, J. Evers, Phys. Rev. A 78, 0518021 (2008)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsRazi UniversityKermanshahIran

Personalised recommendations