Advertisement

A conservative energy-momentum tensor in the f(R,T) gravity and its implications for the phenomenology of neutron stars

  • S. I. dos SantosJr.
  • G. A. Carvalho
  • P. H. R. S. MoraesEmail author
  • C. H. Lenzi
  • M. Malheiro
Regular Article
  • 26 Downloads

Abstract.

The solutions for the Tolmann-Oppenheimer-Volkoff (TOV) equation bring valuable information about the macroscopical features of compact astrophysical objects as neutron stars. They are sensitive to both the equation of state considered for nuclear matter and the background gravitational theory. In this work we construct the TOV equation for a conservative version of the f(R,T) gravity. While the non-vanishing of the covariant derivative of the f(R,T) energy-momentum tensor yields, in a cosmological perspective, the prediction of creation of matter throughout the universe evolution, in the analysis of the hydrostatic equilibrium of compact astrophysical objects, this property still lacks a convincing physical explanation. The imposition of \(\nabla^{\mu}T_{\mu\nu} = 0\) demands a particular form for the function h(T) in \(f(R,T) = R + h(T)\), which is here derived. Therefore, the choice of a specific equation of state for the stellar matter demands a unique form of h(T), manifesting a strong connection between conserved f(R,T) gravity and the stellar matter constitution. We construct and solve the TOV equation for the general equation of state \( p=k\rho^{\Gamma}\), with p being the stellar pressure, k the EoS parameter, \(\rho\) the energy density and \(\Gamma\) the adiabatic index. We derive the macroscopical properties of neutron stars (\(\Gamma =5/3\)) within this approach and show that their masses are very sensitive to the parameter \( \alpha\) that enters in the h(T) function, while their radii are not. These conclusions are in contrast with previous works of compact stars in the non-conservative version of the theory, where the stellar masses do not change considerably but the stellar radii exhibit a large increase, not very consistent with the neutron star phenomenology.

References

  1. 1.
    S. Weinberg, Rev. Mod. Phys. 61, 1 (1989)ADSGoogle Scholar
  2. 2.
    G. Hinshaw et al., Astrophys. J. Suppl. 208, 19 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    P. Demorest et al., Nature 467, 1081 (2010)ADSGoogle Scholar
  4. 4.
    J. Antoniadis et al., Science 340, 6131 (2013)ADSGoogle Scholar
  5. 5.
    D.A. Howell et al., Nature 443, 308 (2006)ADSGoogle Scholar
  6. 6.
    R.A. Scalzo et al., Astrophys. J. 713, 1073 (2010)ADSGoogle Scholar
  7. 7.
    S.O. Kepler et al., Mon. Not. R. Astron. Soc. 375, 1315 (2007)ADSGoogle Scholar
  8. 8.
    S. Nojiri, S.D. Odintsov, Phys. Rep. 505, 59 (2011)ADSMathSciNetGoogle Scholar
  9. 9.
    T.P. Sotiriou, V. Faraoni, Rev. Mod. Phys. 82, 451 (2010)ADSGoogle Scholar
  10. 10.
    A. De Felice, S. Tsujikawa, Living Rev. Relativ. 13, 161 (2010)Google Scholar
  11. 11.
    A.G. Riess et al., Astron. J. 116, 1009 (1998)ADSGoogle Scholar
  12. 12.
    S. Perlmutter et al., Astrophys. J. 517, 5 (1999)Google Scholar
  13. 13.
    L. Amendola et al., Phys. Rev. D 75, 083504 (2007)ADSGoogle Scholar
  14. 14.
    Y.-S. Song et al., Phys. Rev. D 76, 063517 (2007)ADSGoogle Scholar
  15. 15.
    S. Capozziello et al., Phys. Rev. D 93, 023501 (2016)ADSMathSciNetGoogle Scholar
  16. 16.
    A.V. Astashenok et al., JCAP 12, 040 (2013)ADSGoogle Scholar
  17. 17.
    S. Kalita, B. Mukhopadhyay, JCAP 09, 007 (2018)ADSGoogle Scholar
  18. 18.
    T. Harko et al., Phys. Rev. D 84, 024020 (2011)ADSGoogle Scholar
  19. 19.
    A.L. Erickcek et al., Phys. Rev. D 74, 121501 (2006)ADSGoogle Scholar
  20. 20.
    T. Chiba et al., Phys. Rev. D 75, 124014 (2007)ADSGoogle Scholar
  21. 21.
    S. Capozziello et al., Phys. Rev. D 76, 104019 (2007)ADSMathSciNetGoogle Scholar
  22. 22.
    A.D. Dolgov, M. Kawasaki, Phys. Lett. B 573, 1 (2003)ADSGoogle Scholar
  23. 23.
    T. Chiba, Phys. Lett. B 575, 1 (2003)ADSGoogle Scholar
  24. 24.
    G.J. Olmo, Phys. Rev. D 72, 083505 (2005)ADSGoogle Scholar
  25. 25.
    W. Hu, I. Sawicki, Phys. Rev. D 76, 064004 (2007)ADSGoogle Scholar
  26. 26.
    S.A. Appleby, R.A. Battye, Phys. Lett. B 654, 7 (2007)ADSMathSciNetGoogle Scholar
  27. 27.
    A.A. Starobinsky, JETP Lett. 86, 157 (2007)ADSGoogle Scholar
  28. 28.
    M.-X. Xu et al., Eur. Phys. J. C 76, 449 (2016)ADSGoogle Scholar
  29. 29.
    H. Shabani, M. Farhoudi, Phys. Rev. D 90, 044031 (2014)ADSGoogle Scholar
  30. 30.
    R. Zaregonbadi et al., Phys. Rev. D 94, 084052 (2016)ADSGoogle Scholar
  31. 31.
    A. Alhamzawi, R. Alhamzawi, Int. J. Mod. Phys. D 25, 1650020 (2016)ADSMathSciNetGoogle Scholar
  32. 32.
    E.H. Baffou et al., Chin. J. Phys. 55, 467 (2017)Google Scholar
  33. 33.
    R.V. Lobato, G.A. Carvalho, A.G. Martins, P.H.R.S. Moraes, Eur. Phys. J. Plus 134, 132 (2019)Google Scholar
  34. 34.
    H. Velten, T.R.P. Caramês, Phys. Rev. D 95, 123536 (2017)ADSGoogle Scholar
  35. 35.
    M. Jamil, D. Momeni, M. Raza, R. Myrzakulov, Eur. Phys. J. C 72, 1999 (2012)ADSGoogle Scholar
  36. 36.
    E.H. Baffou, A.V. Kpadonou, M.E. Rodrigues, M.J.S. Houndjo, J. Tossa, Astrophys. Space Sci. 365, 173 (2014)Google Scholar
  37. 37.
    E.H. Baffou, M.J.S. Houndjo, M.E. Rodrigues, A.V. Kpadonou, J. Tossa, Phys. Rev. D 92, 084043 (2015)ADSMathSciNetGoogle Scholar
  38. 38.
    G. Sun, Y.-C. Huang, Int. J. Mod. Phys. D 25, 1650038 (2016)ADSGoogle Scholar
  39. 39.
    P.H.R.S. Moraes, G. Ribeiro, R.A.C. Correa, Astrophys. Space Sci. 361, 227 (2016)ADSGoogle Scholar
  40. 40.
    P.H.R.S. Moraes, J.R.L. Santos, Eur. Phys. J. C 76, 60 (2016)ADSGoogle Scholar
  41. 41.
    P.H.R.S. Moraes, P.K. Sahoo, Eur. Phys. J. C 77, 480 (2017)ADSGoogle Scholar
  42. 42.
    P.H.R.S. Moraes, R.A.C. Correa, G. Ribeiro, Eur. Phys. J. C 78, 192 (2018)ADSGoogle Scholar
  43. 43.
    J. Barrientos O., G.F. Rubilar, Phys. Rev. D 90, 028501 (2014)ADSGoogle Scholar
  44. 44.
    V. Singh, C.P. Singh, Int. J. Theor. Phys. 55, 1257 (2016)Google Scholar
  45. 45.
    P. Kumar, C.P. Singh, Astrophys. Space Sci. 357, 120 (2015)ADSGoogle Scholar
  46. 46.
    T. Harko, Phys. Rev. D 90, 044067 (2014)ADSGoogle Scholar
  47. 47.
    T. Harko, F.S.N. Lobo, Eur. Phys. J. C 70, 373 (2010)ADSGoogle Scholar
  48. 48.
    T. Harko et al., Phys. Rev. D 87, 047501 (2013)ADSGoogle Scholar
  49. 49.
    H. Shabani, A.H. Ziaie, Eur. Phys. J. C 77, 507 (2017)ADSGoogle Scholar
  50. 50.
    T. Josset et al., Phys. Rev. Lett. 118, 021102 (2017)ADSGoogle Scholar
  51. 51.
    R.C. Tolman, Phys. Rev. 55, 364 (1939)ADSGoogle Scholar
  52. 52.
    J.R. Oppenheimer, G.M. Volkoff, Phys. Rev. 55, 374 (1939)ADSGoogle Scholar
  53. 53.
    P.H.R.S. Moraes, J.D.V. Arbañil, M. Malheiro, JCAP 06, 005 (2016)ADSGoogle Scholar
  54. 54.
    G.A. Carvalho, R.V. Lobato, P.H.R.S. Moraes, J.D.V. Arbañil, E. Otoniel, R. Marinho Jr., M. Malheiro, Eur. Phys. J. C 77, 871 (2017)ADSGoogle Scholar
  55. 55.
    R.F. Tooper, Astrophys. J. 140, 434 (1964)ADSMathSciNetGoogle Scholar
  56. 56.
    S. Ray et al., Phys. Rev. D 68, 084004 (2003)ADSGoogle Scholar
  57. 57.
    X.Y. Lai, R.X. Xu, Astropart. Phys. 31, 128 (2009)ADSGoogle Scholar
  58. 58.
    G.A. Carvalho, R.M. Marinho Jr., M. Malheiro, Gen. Relativ. Gravit. 50, 38 (2018)ADSGoogle Scholar
  59. 59.
    S. Capozziello, M. de Laurentis, Phys. Rep. 509, 167 (2011)ADSMathSciNetGoogle Scholar
  60. 60.
    S. Capozziello, M. Francaviglia, Gen. Relativ. Gravit. 40, 357 (2008)ADSGoogle Scholar
  61. 61.
    F.G. Alvarenga et al., Phys. Rev. D 87, 103526 (2013)ADSGoogle Scholar
  62. 62.
    S. Chakraborty, Gen. Relativ. Gravit. 45, 2039 (2013)ADSGoogle Scholar
  63. 63.
    A. Das et al., Eur. Phys. J. C 76, 654 (2016)ADSGoogle Scholar
  64. 64.
    D. Deb et al., JCAP 03, 044 (2018)ADSGoogle Scholar
  65. 65.
    D. Deb et al., Phys. Rev. D 97, 084026 (2018)ADSMathSciNetGoogle Scholar
  66. 66.
    D. Deb, S.V. Ketov, S.K. Maurya, M. Khlopov, P.H.R.S. Moraes, S. Ray, Month. Not. R. Astron. Soc. 485, 5652 (2019)ADSGoogle Scholar
  67. 67.
    J.M. Lattimer, Annu. Rev. Nucl. Part. Sci. 62, 485 (2012)ADSGoogle Scholar
  68. 68.
    J.S. Read et al., Phys. Rev. D 79, 124032 (2009)ADSGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • S. I. dos SantosJr.
    • 1
  • G. A. Carvalho
    • 1
    • 2
    • 3
  • P. H. R. S. Moraes
    • 1
    • 4
    Email author
  • C. H. Lenzi
    • 1
  • M. Malheiro
    • 1
  1. 1.Departamento de FísicaInstituto Tecnológico de AeronáuticaSão José dos CamposBrazil
  2. 2.Dipartimento di Fisica and ICRASapienza Università di RomaRomeItaly
  3. 3.ICRANetPescaraItaly
  4. 4.Dipartimento di FisicaUniversità degli Studi di Napoli Federico IINapoliItaly

Personalised recommendations