Advertisement

Direct analysis of anthraquinone dyed textiles by Surface Enhanced Raman Spectroscopy and Ag nanoparticles obtained by pulsed laser ablation

  • Asia Botto
  • Beatrice Campanella
  • Ilaria Degano
  • Stefano LegnaioliEmail author
  • Giulia Lorenzetti
  • Stefano Pagnotta
  • Francesco Poggialini
  • Vincenzo Palleschi
Regular Article
  • 35 Downloads
Part of the following topical collections:
  1. Focus Point on Scientific Research in Conservation Science

Abstract.

Detection of natural organic dyestuffs in art objects is a challenge for scientists and conservators, as it is limited by severe sampling restrictions. This work is aimed at developing a sampling-free method for the analysis of colorants traditionally used in historical textiles, with a focus on the preservation of the sample integrity to enable its further characterization with other techniques. Thus, in this study, Surface Enhanced Raman Spectroscopy (SERS) was performed directly on laboratory-dyed textiles for the identification of anthraquinone dyes, generally characterized by strong fluorescence signals that hinder conventional Raman spectra. For this purpose, SERS-active silver nanoparticles were produced by Pulsed Laser Ablation in Liquid (PLAL). PLAL presents some advantages when compared to conventional chemical preparation methods, namely the absence of reagents in the suspension and a stronger control over the nanoparticles morphology that can be obtained by changing the ablation conditions. For the analysis, a small piece of fiber was gently rubbed on a microscope glass slide where few drops of Ag nanoparticles were previously deposited and preconcentrated; micro-Raman measurement followed. To ensure the suitability of the analytical strategy for the characterization of historical artworks, the reversibility of the treatment was demonstrated by Laser Induced Breakdown Spectroscopy analysis of a wool fiber treated with nanoparticles and gently cleaned with diluted sodium citrate (p H 6-7).

Supplementary material

13360_2019_12807_MOESM1_ESM.pdf (298 kb)
Supplementary material

References

  1. 1.
    I. Petroviciu, A. Medvedovici, F. Albu, I. Creţu, I. Vanden Berghe, Rom. Rep. Phys. 64, 507 (2012)Google Scholar
  2. 2.
    D. Cardon, Natural Dyes: Sources, Tradition, Technology and Science (Archetype, 2007)Google Scholar
  3. 3.
    I. Degano, J. La Nasa, Top. Curr. Chem. 374, 20 (2016)CrossRefGoogle Scholar
  4. 4.
    I. Degano, E. Ribechini, F. Modugno, M.P. Colombini, Appl. Spectrosc. Rev. 44, 363 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    J. Kirby, M. Spring, C. Higgitt, Natl. Gallery Tech. Bull. 26, 71 (2005)Google Scholar
  6. 6.
    F. Pozzi, J.R. Lombardi, S. Bruni, M. Leona, Anal. Chem. 84, 3751 (2012)CrossRefGoogle Scholar
  7. 7.
    M. Leona, Proc. Natl. Acad. Sci. 106, 14757 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    C. Lofrumento, M. Ricci, E. Platania, M. Becucci, E. Castellucci, J. Raman Spectrosc. 44, 47 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    P.S. Londero, J.R. Lombardi, M. Leona, Anal. Chem. 85, 5463 (2013)CrossRefGoogle Scholar
  10. 10.
    D.C. Rambaldi, F. Pozzi, N. Shibayama, M. Leona, F.D. Preusser, J. Raman Spectrosc. 46, 1073 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    Z. Jurasekova, C. Domingo, J.V. Garcia-Ramos, S. Sanchez-Cortes, J. Raman Spectrosc. 39, 1309 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    C. Zaffino, H.T. Ngo, J. Register, S. Bruni, T. Vo-Dinh, Appl. Phys. A 122, 707 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    E. Giorgetti, P. Marsili, F. Giammanco, S. Trigari, C. Gellini, M. Muniz-Miranda, J. Raman Spectrosc. 46, 462 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    J. Sanyova, Contribution à l’étude de la structure et des propriétés de la laque de garance, PhD Thesis (Brussels, 2001) available at https://difusion.ulb.ac.be/vufind/Record/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/211674/Holdings
  15. 15.
    I. Degano, M. Biesaga, M.P. Colombini, M. Trojanowicz, J. Chromatogr. A 1218, 5837 (2011)CrossRefGoogle Scholar
  16. 16.
    P.C. Lee, D. Meisel, J. Phys. Chem. 86, 3391 (1982)CrossRefGoogle Scholar
  17. 17.
    D. Paramelle, A. Sadovoy, S. Gorelik, P. Free, J. Hobley, D.G. Fernig, Analyst 139, 4855 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    A. Bertolini, G. Carelli, F. Francesconi, M. Francesconi, L. Marchesini, P. Marsili, F. Sorrentino, G. Cristoforetti, S. Legnaioli, V. Palleschi, Anal. Bioanal. Chem. 385, 240 (2006)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Dipartimento di Chimica e Chimica IndustrialeUniversità di PisaPisaItaly
  2. 2.Istituto di Chimica dei Composti OrganometalliciConsiglio Nazionale delle RicerchePisaItaly
  3. 3.Scuola Normale Superiore di PisaPisaItaly

Personalised recommendations