Advertisement

Numerical solutions of interval-valued fractional nonlinear differential equations

  • Lan-Lan Huang
  • Bao-Qing LiuEmail author
  • Dumitru Baleanu
  • Guo-Cheng Wu
Regular Article
  • 32 Downloads
Part of the following topical collections:
  1. Focus Point on Fractional Differential Equations in Physics: Recent Advantages and Future Direction

Abstract.

A class of interval-valued fractional nonlinear differential equations is proposed in this paper. The system is reduced to two kinds of standard fractional differential equations if w -monotone conditions are provided. Furthermore, two classes of fractional integral equations are obtained and the predictor-corrector method is used for numerical solutions.

References

  1. 1.
    I. Podlubny, Fractional Differential Equation (Academic Press, San Diego, 1999)Google Scholar
  2. 2.
    A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory an Applications of Fractional Differential Equations (Elsevier Science B.V., Amsterdam, 2006)Google Scholar
  3. 3.
    X. Yang, H. Qi, X. Jiang, Appl. Math. Lett. 78, 1 (2018)MathSciNetCrossRefGoogle Scholar
  4. 4.
    L. Mo, X. Yuan, Y. Yu, Physics A 509, 479 (2018)ADSCrossRefGoogle Scholar
  5. 5.
    W. Chen, Y. Liang, Chaos, Solitons Fractals 102, 72 (2017)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    V. Lupulescu, Fuzzy Sets Syst. 265, 63 (2015)CrossRefGoogle Scholar
  7. 7.
    M.T. Malinowski, Appl. Math. Lett. 24, 2118 (2011)MathSciNetCrossRefGoogle Scholar
  8. 8.
    M.T. Malinowski, Nonlinear Anal., Real World Appl. 13, 860 (2012)MathSciNetCrossRefGoogle Scholar
  9. 9.
    S. Markov, Computing 22, 325 (1979)MathSciNetCrossRefGoogle Scholar
  10. 10.
    L. Stefnini, Fuzzy Set. Syst. 161, 1564 (2010)CrossRefGoogle Scholar
  11. 11.
    R.E. Moore, Methods and applications of Interval Analysis (SIAM, Philadelphia, 1979)Google Scholar
  12. 12.
    H. Nguyen, V. Kreinovich, Q. Zuo, Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 5, 317 (1997)CrossRefGoogle Scholar
  13. 13.
    L.V. Kolev, Interval Methods for Circuit Analysis (World Scientific, Singapore 1993)Google Scholar
  14. 14.
    G. Alefeld, G. Mayer, J. Comput. Appl. Math. 121, 421 (2000)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    R. Baker Kearfott, V. Kreinovich, Applications of Interval Computations (Kluwer Academic Publishers, 1996)Google Scholar
  16. 16.
    R. Agarwal, V. Lakshmikantham, J. Nieto, Nonlinear Anal. 72, 2859 (2010)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Y. Huang, R. Bai, Y. Liu, I. Szanto, Miskolc Math. Notes 18, 811 (2017)MathSciNetCrossRefGoogle Scholar
  18. 18.
    A. Khastan, R. Rodriguez-Lopez, Fuzzy Sets Syst. 295, 114 (2016)CrossRefGoogle Scholar
  19. 19.
    A. Ahmadian, S. Salahshour, C.S. Chan, IEEE Trans. Fuzzy Syst. 25, 218 (2017)CrossRefGoogle Scholar
  20. 20.
    P. Diamond, P.E. Kloeden, Metric Spaces of Fuzzy Sets: Theory and Applications (World Scientific, 1994)Google Scholar
  21. 21.
    A. Chidouh, A. Guezane-Lakoud, R. Bebbouchi, Vietnam J. Math. 44, 739 (2016)MathSciNetCrossRefGoogle Scholar
  22. 22.
    K. Diethelm, A.D. Freed, Nonlinear Dyn. 29, 3 (2002)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Lan-Lan Huang
    • 1
  • Bao-Qing Liu
    • 2
    Email author
  • Dumitru Baleanu
    • 3
    • 4
  • Guo-Cheng Wu
    • 1
  1. 1.Data Recovery Key Laboratory of Sichuan Province, College of Mathematics and Information ScienceNeijiang Normal UniversityNeijiangChina
  2. 2.School of Applied MathematicsNanjing University of Finance and EconomicsNanjingChina
  3. 3.Department of MathematicsCankaya UniversityBalgatTurkey
  4. 4.Institute of Space SciencesMagurele-BucharestRomania

Personalised recommendations