Advertisement

Stability of a general reaction-diffusion HIV-1 dynamics model with humoral immunity

  • A. D. AlAgha
  • A. M. ElaiwEmail author
Regular Article

Abstract.

This paper studies the global stability of a six-dimensional system of PDEs that describes the HIV-1 dynamics with humoral immune response and heterogeneous diffusion. The model contains some parameters that measure the efficiency of highly active antiretroviral therapies (HAART). The model also comprises three kinds of infected cells 1) latently infected cells which do not produce HIV-1 virions, but can be activated to produce viruses; 2) short-lived productively infected cells that are characterized by living for a short period of time and creating large amounts of HIV-1 particles; 3) long-lived productively infected cells that are characterized by having a long life and producing small amounts of HIV-1 virions. The production, infection and death rates of all compartments are given by general functions. The non-negativity and boundedness of the solutions are discussed. The global stability conditions for the infection-free equilibrium, humoral-inactivated equilibrium, and humoral-activated equilibrium are investigated by building suitable Lyapunov functionals. Some numerical simulations are executed to support the theoretical results and show the spatiotemporal evolution of the solutions.

References

  1. 1.
    M.A. Nowak, R.M. May, Virus Dynamics: Mathematical Principles of Immunology and Virology (Oxford University Press, Oxford, 2000)Google Scholar
  2. 2.
    S. Pankavich, Differ. Equ. Dyn. Syst. 24, 281 (2016)MathSciNetCrossRefGoogle Scholar
  3. 3.
    A.M. Elaiw, N.H. AlShamrani, Math. Methods Appl. Sci. 40, 699 (2017)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    X. Wang, S. Tang, X. Song, L. Rong, J. Biol. Dyn. 11, 455 (2017)MathSciNetCrossRefGoogle Scholar
  5. 5.
    X. Ren, Y. Tian, L. Liu, X. Liu, J. Math. Biol. 76, 1831 (2018)MathSciNetCrossRefGoogle Scholar
  6. 6.
    R. Xu, J. Math. Anal. Appl. 375, 75 (2011)MathSciNetCrossRefGoogle Scholar
  7. 7.
    R. Xu, Comput. Math. Appl. 61, 2799 (2011)MathSciNetCrossRefGoogle Scholar
  8. 8.
    A.M. Elaiw, N.H. AlShamrani, Math. Methods Appl. Sci. 41, 6645 (2018)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    A.M. Elaiw, N.H. AlShamrani, Nonlinear Anal. 26, 161 (2015)CrossRefGoogle Scholar
  10. 10.
    A.M. Elaiw, A.M. Althiabi, M.A. Algamdi, N. Bellomo, J. Comput. Anal. Appl. 24, 728 (2018)MathSciNetGoogle Scholar
  11. 11.
    A.M. Elaiw, Nonlinear Anal. 11, 2253 (2010)CrossRefGoogle Scholar
  12. 12.
    A.M. Elaiw, Nonlinear Dyn. 69, 423 (2012)CrossRefGoogle Scholar
  13. 13.
    A.M. Elaiw, N.A. Almuallem, Math. Methods Appl. Sci. 39, 4 (2016)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    A.M. Elaiw, I.A. Hassanien, S.A. Azoz, J. Kor. Math. Soc. 49, 779 (2012)CrossRefGoogle Scholar
  15. 15.
    A.M. Elaiw, S.A. Azoz, Math. Methods Appl. Sci. 36, 383 (2013)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    A.M. Elaiw, A.A. Raezah, Math. Methods Appl. Sci. 40, 5863 (2017)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    A.D. Hobiny, A.M. Elaiw, Almatrafi, Adv. Differ. Equ. 2018, 276 (2018)CrossRefGoogle Scholar
  18. 18.
    A.M. Elaiw, E.Kh. Elnahary, A.A. Raezah, Adv. Differ. Equ. 2018, 85 (2018)CrossRefGoogle Scholar
  19. 19.
    A.M. Elaiw, A.A. Raezah, S.A. Azoz, Adv. Differ. Equ. 2018, 414 (2018)CrossRefGoogle Scholar
  20. 20.
    N.F. Britton, Essential Mathematical Biology (Springer-Verlag, London, 2003)Google Scholar
  21. 21.
    M.C. Strain, D.D. Richman, J.K. Wong, H. Levine, J. Theor. Biol. 218, 85 (2002)CrossRefGoogle Scholar
  22. 22.
    Q. Sattentau, Nat. Rev. Microbiol. 6, 815 (2008)CrossRefGoogle Scholar
  23. 23.
    K. Wang, W. Wang, Math. Biosci. 210, 78 (2007)MathSciNetCrossRefGoogle Scholar
  24. 24.
    M.A. Nowak, C.R.M. Bangham, Science 272, 74 (1996)ADSCrossRefGoogle Scholar
  25. 25.
    S.A. Gourley, J.W.H. So, J. Math. Biol. 44, 49 (2002)MathSciNetCrossRefGoogle Scholar
  26. 26.
    R. Xu, Z. Ma, J. Theor. Biol. 257, 499 (2009)CrossRefGoogle Scholar
  27. 27.
    C.C. McCluskey, Y. Yang, Nonlinear Anal. 25, 64 (2015)CrossRefGoogle Scholar
  28. 28.
    C. Kang, H. Miao, X. Chen, J. Xu, D. Huang, Adv. Differ. Equ. 2017, 324 (2017)CrossRefGoogle Scholar
  29. 29.
    H. Miao, Z. Teng, X. Abdurahman, Z. Li, Comput. Appl. Math. 37, 3780 (2017)CrossRefGoogle Scholar
  30. 30.
    K. Zhuang, Math. Comput. Appl. 22, 7 (2017)Google Scholar
  31. 31.
    A. Rezounenko, Discr. Contin. Dyn. Syst. 23, 1091 (2018)MathSciNetGoogle Scholar
  32. 32.
    H. Miao, X. Abdurahman, Z. Teng, L. Zhang, Chaos, Solitons Fractals 110, 280 (2018)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    X. Lai, X. Zou, Discr. Contin. Dyn. Syst. 21, 2567 (2016)CrossRefGoogle Scholar
  34. 34.
    O. Stancevic, C. Angstmann, J.M. Murray, B.I. Henry, Bull. Math. Biol. 75, 774 (2013)MathSciNetCrossRefGoogle Scholar
  35. 35.
    J. Xu, Y. Geng, Math. Methods Appl. Sci. 42, 892 (2018)CrossRefGoogle Scholar
  36. 36.
    Z. Xu, Y. Xu, Int. J. Biomath. 11, 1850071 (2018)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Y. Zhang, Z. Xu, Nonlinear Anal. 15, 118 (2014)CrossRefGoogle Scholar
  38. 38.
    H.L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems (AMS, Providence, 1995)Google Scholar
  39. 39.
    M.H. Protter, H.F. Weinberger, Maximum Principles in Differential Equations (Prentice Hall, Englewood Cliffs, 1967)Google Scholar
  40. 40.
    D. Henry, Geometric Theory of Semilinear Parabolic Equations (Springer-Verlag, New York, 1993)Google Scholar
  41. 41.
    J.K. Hale, S.M. Verduyn Lunel, Introduction to Functional Differential Equations (Springer-Verlag, New York, 1993)Google Scholar
  42. 42.
    N. Bellomo, Y. Tao, Discr. Contin. Dyn. Syst. Ser. S 13, 105 (2020)Google Scholar
  43. 43.
    N. Bellomo, M. Winkler, Trans. Am. Math. Soc. Ser. B 4, 31 (2017)CrossRefGoogle Scholar
  44. 44.
    N. Bellomo, M. Winkler, Commun. Part. Differ. Equ. 42, 436 (2017)CrossRefGoogle Scholar
  45. 45.
    N. Bellomo, A. Bellouquid, N. Chouhad, Math. Models Methods Appl. Sci. 26, 2041 (2016)MathSciNetCrossRefGoogle Scholar
  46. 46.
    B. Hu, J. Lankeit, J. Math. Anal. Appl. 468, 344 (2018)MathSciNetCrossRefGoogle Scholar
  47. 47.
    M. Winkler, Acta Appl. Math. (2018)  https://doi.org/10.1007/s10440-018-0211-0

Copyright information

© Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations