Advertisement

Pileup mitigation at the Large Hadron Collider with graph neural networks

  • J. Arjona Martínez
  • O. Cerri
  • M. Spiropulu
  • J. R. Vlimant
  • M. PieriniEmail author
Regular Article

Abstract.

At the Large Hadron Collider, the high-transverse-momentum events studied by experimental collaborations occur in coincidence with parasitic low-transverse-momentum collisions, usually referred to as pileup. Pileup mitigation is a key ingredient of the online and offline event reconstruction as pileup affects the reconstruction accuracy of many physics observables. We present a classifier based on Graph Neural Networks, trained to retain particles coming from high-transverse-momentum collisions, while rejecting those coming from pileup collisions. This model is designed as a refinement of the PUPPI algorithm (D. Bertolini et al., JHEP 10, 059 (2014)), employed in many LHC data analyses since 2015. Thanks to an extended basis of input information and the learning capabilities of the considered network architecture, we show an improvement in pileup-rejection performances with respect to state-of-the-art solutions.

References

  1. 1.
    ATLAS Collaboration (G. Aad et al.), JINST 3, S08003 (2008)Google Scholar
  2. 2.
    CMS Collaboration (S. Chatrchyan et al.), JINST 3, S08004 (2008)ADSGoogle Scholar
  3. 3.
    CMS Collaboration (S. Chatrchyan et al.), JINST 9, P10009 (2014) arXiv:1405.6569CrossRefGoogle Scholar
  4. 4.
    ATLAS Collaboration, ATLAS-CONF-2010-069 (2010)Google Scholar
  5. 5.
    M. Cacciari, J. Rojo, G.P. Salam, G. Soyez, JHEP 12, 032 (2008) arXiv:0810.1304ADSCrossRefGoogle Scholar
  6. 6.
    D. Krohn, M.D. Schwartz, M. Low, L.T. Wang, Phys. Rev. D 90, 065020 (2014) arXiv:1309.4777ADSCrossRefGoogle Scholar
  7. 7.
    M. Cacciari, G.P. Salam, G. Soyez, Phys. Rev. D 92, 014003 (2015) arXiv:1404.7353ADSCrossRefGoogle Scholar
  8. 8.
    P. Berta, M. Spousta, D.W. Miller, R. Leitner, JHEP 06, 092 (2014) arXiv:1403.3108ADSCrossRefGoogle Scholar
  9. 9.
    G. Soyez, G.P. Salam, J. Kim, S. Dutta, M. Cacciari, Phys. Rev. Lett. 110, 162001 (2013) arXiv:1211.2811ADSCrossRefGoogle Scholar
  10. 10.
    M. Cacciari, G.P. Salam, G. Soyez, Eur. Phys. J. C 75, 59 (2015) arXiv:1407.0408ADSCrossRefGoogle Scholar
  11. 11.
    D. Bertolini, P. Harris, M. Low, N. Tran, JHEP 10, 059 (2014) arXiv:1407.6013ADSCrossRefGoogle Scholar
  12. 12.
    Tech. Rep. CMS-PAS-JME-14-001, CERN, Geneva https://cds.cern.ch/record/1751454 (2014)
  13. 13.
    Tech. Rep. ATLAS-CONF-2017-065, CERN, Geneva, https://cds.cern.ch/record/2281055 (2017)
  14. 14.
    Y. Li, D. Tarlow, M. Brockschmidt, R.S. Zemel, CoRR abs/1511.05493 (2015) arXiv:1511.05493Google Scholar
  15. 15.
    J. Orbach, Arch. Gen. Psych. 7, 218 (1962)CrossRefGoogle Scholar
  16. 16.
    K. Cho, B. van Merrienboer, D. Bahdanau, Y. Bengio, CoRR abs/1409.1259 (2014) arXiv:1409.1259Google Scholar
  17. 17.
    A. Radovic et al., Nature 560, 41 (2018)ADSCrossRefGoogle Scholar
  18. 18.
    CMS Collaboration, Tech. Rep. CMS-DP-2017-027, CERN, Geneva, http://cds.cern.ch/record/2275226 (2017)
  19. 19.
    ATLAS Collaboration, Tech. Rep. ATL-PHYS-PUB-2017-003, CERN, Geneva, http://cds.cern.ch/record/2255226 (2017)
  20. 20.
    A. Aurisano et al., JINST 11, P09001 (2016) arXiv:1604.01444CrossRefGoogle Scholar
  21. 21.
    I. Henrion, Neural message passing for jet physics, https://cims.nyu.edu/~bruna/Media/nmp_jet.pdf (2017)
  22. 22.
    M. Abdughani, J. Ren, L. Wu, J.M. Yang (2018) arXiv:1807.09088Google Scholar
  23. 23.
    N. Choma, CoRR abs/1809.06166 (2018)Google Scholar
  24. 24.
    P.T. Komiske, E.M. Metodiev, B. Nachman, M.D. Schwartz, JHEP 12, 051 (2017) arXiv:1707.08600ADSCrossRefGoogle Scholar
  25. 25.
    CMS Collaboration (S. Chatrchyan et al.), JINST 9, P10009 (2014) arXiv:1405.6569CrossRefGoogle Scholar
  26. 26.
    ATLAS Collaboration (M. Aaboud et al.), Eur. Phys. J. C 77, 466 (2017) arXiv:1703.10485ADSCrossRefGoogle Scholar
  27. 27.
    CMS Collaboration (A.M. Sirunyan et al.), JINST 12, P10003 (2017) arXiv:1706.04965CrossRefGoogle Scholar
  28. 28.
    T. Sjöstrand et al., Comput. Phys. Commun. 191, 159 (2015) arXiv:1410.3012ADSCrossRefGoogle Scholar
  29. 29.
    R. Corke, T. Sjöstrand, JHEP 03, 032 (2011) arXiv:1011.1759ADSCrossRefGoogle Scholar
  30. 30.
    DELPHES 3 Collaboration (J. de Favereau et al.), JHEP 02, 057 (2014) arXiv:1307.6346ADSGoogle Scholar
  31. 31.
    R. Brun, F. Rademakers, Nucl. Instrum. Methods A 389, 81 (1997)ADSCrossRefGoogle Scholar
  32. 32.
    D.P. Kingma, J. Ba, CoRR abs/1412.6980 (2014) arXiv:1412.6980Google Scholar
  33. 33.
    J. Gilmer, S.S. Schoenholz, P.F. Riley, O. Vinyals, G.E. Dahl, CoRR abs/1704.01212 (2017) arXiv:1704.01212Google Scholar
  34. 34.
    K. He, X. Zhang, S. Ren, J. Sun, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)Google Scholar
  35. 35.
    F. Chollet, Keras https://keras.io (2015)
  36. 36.
    M. Abadi, TensorFlow: Large-scale machine learning on heterogeneous systems (2015) software available from https://www.tensorflow.org/
  37. 37.
    Microsoft, Gated graph neural network samples, https://github.com/Microsoft/gated-graph-neural-network-samples (2017)
  38. 38.
    M. Cacciari, G.P. Salam, G. Soyez, JHEP 04, 063 (2008) arXiv:0802.1189ADSCrossRefGoogle Scholar
  39. 39.
    M. Cacciari, G.P. Salam, G. Soyez, Eur. Phys. J. C 72, 1896 (2012) arXiv:1111.6097ADSCrossRefGoogle Scholar
  40. 40.
    M. Cacciari, G.P. Salam, Phys. Lett. B 641, 57 (2006) hep-ph/0512210ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.University of CambridgeCambridgeUK
  2. 2.California Institute of TechnologyPasadenaUSA
  3. 3.CERNGenevaSwitzerland

Personalised recommendations