Advertisement

Study of F(T) gravity in the framework of the Tsallis holographic dark energy model

  • Ayman A. AlyEmail author
Regular Article

Abstract.

In the present study, a new f(T) modified gravity model is established using a Tsallis holographic dark energy model (THDE) with a Hubble cutoff. Assuming a power law scale factor we verified the growth of dark energy; deceleration parameter q is considered, which shows that the universe is in acceleration mode. Moreover, in order to study the stability of our model, we consider the square of speed of sound \(v_{D}^{2}\) , showing that the model is stable over the considered range of redshift z. We illustrate the evolution of energy conditions, and we notice that the strong energy condition (SEC) and the weak energy condition (WEC) are violated over the accelerated phantom regime.

References

  1. 1.
    A.G. Riess et al., J. Astron. 116, 1009 (1998)CrossRefGoogle Scholar
  2. 2.
    WMAP Collaboration (E. Komatsu et al.), Astrophys. J. Suppl. 192, 18 (2011)CrossRefGoogle Scholar
  3. 3.
    K. Ichiki et al., J. Cosmol. Astropart. Phys. 06, 005 (2008)CrossRefGoogle Scholar
  4. 4.
    P. Astier et al., Astron. Astrophys. 447, 31 (2006)CrossRefGoogle Scholar
  5. 5.
    C. Armendariz-Picon et al., Phys. Rev. D 63, 103510 (2001)CrossRefGoogle Scholar
  6. 6.
    B. Ratra, P.J. Peebles, Phys. Rev. D 37, 3406 (1988)CrossRefGoogle Scholar
  7. 7.
    A. Sen, J. High Energy Phys. 4, 48 (2002)CrossRefGoogle Scholar
  8. 8.
    R.R. Caldwell, Phys. Lett. B 545, 23 (2002)CrossRefGoogle Scholar
  9. 9.
    N. Arkani-Hamed et al., J. Cosmol. Astropart. Phys. 04, 001 (2004)CrossRefGoogle Scholar
  10. 10.
    A. Anisimov, J. Cosmol. Astropart. Phys. 06, 006 (2005)CrossRefGoogle Scholar
  11. 11.
    A. Kamenshchik et al., Phys. Lett. B 511, 265 (2001)CrossRefGoogle Scholar
  12. 12.
    H. Wei, R.G. Cai, Phys. Lett. B 660, 113 (2008)CrossRefGoogle Scholar
  13. 13.
    S. Wang, arXiv:1612.00345 (2016)Google Scholar
  14. 14.
    S. Leonard, J. Math. Phys. 11, 6377 (1995)Google Scholar
  15. 15.
    P. Horava, D. Minic, Phys. Rev. Lett. 85, 1610 (2000)MathSciNetCrossRefGoogle Scholar
  16. 16.
    S. Thomas, Phys. Rev. Lett. 89, 081301 (2002)MathSciNetCrossRefGoogle Scholar
  17. 17.
    M. Li, Phys. Lett. B 603, 1 (2004)CrossRefGoogle Scholar
  18. 18.
    J. Shen et al., Phys. Lett. B 200, 609 (2005)Google Scholar
  19. 19.
    B. Guberina et al., J. Cosmol. Astropart. Phys. 01, 012 (2007)CrossRefGoogle Scholar
  20. 20.
    M. Abdollahi Zadeh et al., Eur. Phys. J. C 78, 940 (2018)CrossRefGoogle Scholar
  21. 21.
    S. Ghaffari et al., Eur. Phys. J. C 78, 706 (2018)CrossRefGoogle Scholar
  22. 22.
    M. Younas et al., Adv. High Energy Phys. 2019, 1287932 (2019)CrossRefGoogle Scholar
  23. 23.
    S. Ghaffari et al., Phys. Dark Universe 23, 100246 (2019)CrossRefGoogle Scholar
  24. 24.
    M. Tavayef et al., Phys. Lett. B 781, 2487 (2013)Google Scholar
  25. 25.
    C. Tsallis, J. Stat. Phys. 52, 479 (1988)CrossRefGoogle Scholar
  26. 26.
    A. Aly, M. Selim, Eur. Phys. J. Plus 130, 164 (2015)CrossRefGoogle Scholar
  27. 27.
    M. Jamil et al., Eur. Phys. J. C 72, 1999 (2012)CrossRefGoogle Scholar
  28. 28.
    I. Arcos, J. Pereira, Int. J. Mod. Phys. D 13, 2137 (2004)Google Scholar
  29. 29.
    J. Lawski, Astron. Rev. 108, 8 (2013)Google Scholar
  30. 30.
    K. Bamba et al., JCAP 01, 021 (2011)CrossRefGoogle Scholar
  31. 31.
    A. Cohen et al., Phys. Rev. Lett. 82, 4971 (1999)MathSciNetCrossRefGoogle Scholar
  32. 32.
    L. Susskind, J. Math. Phys. 36, 6377 (1995)MathSciNetCrossRefGoogle Scholar
  33. 33.
    S. Rani et al., JCAP 03, 031 (2015)CrossRefGoogle Scholar
  34. 34.
    A. Pasqaua, Astrophys. Space Sci. 340, 199 (2012)CrossRefGoogle Scholar
  35. 35.
    J. Copeland et al., Int. J. Mod. Phys. D 15, 1753 (2006)CrossRefGoogle Scholar
  36. 36.
    A. Mamon, S. Das, Int. J. Mod. Phys. D 25, 7650032 (2016)CrossRefGoogle Scholar
  37. 37.
    A. Rivera, J. Farieta, arXiv:1605.01984 (2016)Google Scholar
  38. 38.
    R. Caldwell, E. Linder, Phys. Rev. Lett. 95, 141301 (2005)CrossRefGoogle Scholar
  39. 39.
    M. Sharif et al., Symmetry 10, 153 (2018)CrossRefGoogle Scholar
  40. 40.
    A. Pasqua et al., Int. J. Theor. Phys. 53, 2988 (2014)CrossRefGoogle Scholar
  41. 41.
    S. Capozziello et al., Phys. Lett. B 781, 064 (2018)CrossRefGoogle Scholar
  42. 42.
    J. Santos et al., Phys. Rev. D 75, 083523 (2007)MathSciNetCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Physics Department, Faculty of ScienceDamanhour UniversityDamanhurEgypt

Personalised recommendations