Advertisement

Dirac equation in the curved spacetime and generalized uncertainty principle: A fundamental quantum mechanical approach with energy-dependent potentials

  • Özlem YeşiltaşEmail author
Regular Article
  • 19 Downloads

Abstract.

In this work, we have obtained the solutions of the (1 + 1)-dimensional Dirac equation on a gravitational background within the generalized uncertainty principle. We have shown that how minimal length parameters effect the Dirac particle in a spacetime described by conformally flat metric. Also, supersymmetric quantum mechanics is used both to factorize the Dirac Hamiltonians and obtain new metric functions. Finally, it is observed that the energy-dependent potentials may be extended to the energy-dependent metric functions.

References

  1. 1.
    E. Witten, Phys. Today 49, 24 (1996)MathSciNetCrossRefGoogle Scholar
  2. 2.
    L.J. Garay, Int. J. Mod. Phys. A 10, 145 (1995)ADSCrossRefGoogle Scholar
  3. 3.
    R.J. Adler, D.I. Santiago, Mod. Phys. Lett. A 14, 1371 (1999)ADSCrossRefGoogle Scholar
  4. 4.
    A. Kempf, G. Mangano, R.B. Mann, Phys. Rev. D 52, 1108 (1995)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    C. Quesne, V.M. Tkachuk, J. Phys. A 38, 1747 (2005)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    M.M. Stesko, Phys. Rev. A 74, 062105 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    K. Nozari, P. Pedram, M. Molkara, Int. J. Theor. Phys. 51, 12681275 (2012)CrossRefGoogle Scholar
  8. 8.
    K. Nozari, M. Karami, Mod. Phys. Lett. A 20, 3095 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    S.K. Moayedi, F. Darabi, Phys. Lett. A 322, 173 (2004)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Y. Sucu, N. Ünal, J. Math. Phys. 48, 052503 (2007)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Ö. Yeşiltaş, Adv. High Energy Phys. 2014, 186425 (2014)Google Scholar
  12. 12.
    A.V. Shapovalov, A.I. Breev, Int. J. Geom. Methods Mod. Phys. 15, 1850085 (2017)CrossRefGoogle Scholar
  13. 13.
    M. Arminjon, F. Reifler, Ann. Phys. 523, 531 (2011)MathSciNetCrossRefGoogle Scholar
  14. 14.
    M. Arminjon, Int. J. Theor. Phys. 52, 4032 (2013)CrossRefGoogle Scholar
  15. 15.
    M. Arminjon, Found. Phys. Lett. 19, 225 (2006)MathSciNetCrossRefGoogle Scholar
  16. 16.
    N. Levinson, Kgl. Danske Vid. Selskab, Mat.-Fis. Med. 25, 9 (1949)Google Scholar
  17. 17.
    F. Calogero, G. Jagannathan, Nuovo Cimento A 47, 178 (1967)ADSCrossRefGoogle Scholar
  18. 18.
    J. Mourad, H. Sazdjian, J. Math. Phys. 35, 6379 (1994)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    V.I. Belyavskii, M.V. Goldfarb, Y.V. Kopaev, Fiz. Teh. Poluprovodn. 31, 1095 (2007)Google Scholar
  20. 20.
    M. de Sanctis, P. Quintero, Eur. Phys. J. A 39, 1434 (2009)CrossRefGoogle Scholar
  21. 21.
    A. Schulze-Halberg, P. Roy, Ann. Phys. 378, 234 (2017)ADSCrossRefGoogle Scholar
  22. 22.
    A. Schulze-Halberg, P. Roy, Ann. Phys. 380, 78 (2017)ADSCrossRefGoogle Scholar
  23. 23.
    A. Schulze-Halberg, P. Roy, J. Math. Phys. 58, 113507 (2017)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    A. Schulze-Halberg, Ö. Yeşiltaş, Eur. Phys. J. Plus 133, 26 (2018)CrossRefGoogle Scholar
  25. 25.
    G. Junker, Supersymmetric Methods in Quantum and Statistical Physics (Springer-Verlag Berlin Heidelberg, 1996)Google Scholar
  26. 26.
    B. Thaller, The Dirac Equation (Springer, Berlin, 1992)Google Scholar
  27. 27.
    R.J. Hughes, V.A. Kosteleck, M.M. Nieto, Phys. Rev. D 34, 1100 (1986)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    H. Weyl, Z. Phys. 56, 330 (1929)ADSCrossRefGoogle Scholar
  29. 29.
    V.A. Fock, Z. Phys. 57, 261 (1929)ADSCrossRefGoogle Scholar
  30. 30.
    K. Nozari, P. Pedram, M. Molkara, Int. J. Theor. Phys. 51, 12681275 (2012)CrossRefGoogle Scholar
  31. 31.
    Ma Meng-Sen Ma, Ren Zhao, J. Math. Phys. 55, 082109 (2014)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    N. Messai, B. Hamil, A. Hafdallah, Mod. Phys. Lett. A 33, 1850202 (2018)ADSCrossRefGoogle Scholar
  33. 33.
    H.G. Dosch, J.H. Jansen, V.F. Muller, Phys. Nor. 5, 2 (1971)Google Scholar
  34. 34.
    Milton Abramowitz, Irene A. Stegun, Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables, in Dover Books on Mathematics (Dover Publications, 2012)Google Scholar
  35. 35.
    F. Cooper, A. Khare, U. Sukhatme, Supersymmetry in Quantum Mechanics (World Scientific Publishing Company, 2001)Google Scholar
  36. 36.
    Stephen C. Anco, Angel Ballesteros, Maria Luz Gandarias, Phys. Lett. A 383, 801 (2019)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    B. Midya, B. Roy, J. Phys. A 42, 285301 (2009)MathSciNetCrossRefGoogle Scholar
  38. 38.
    J.F. Carinena et al., Ann. Phys. 322, 434 (2007)ADSCrossRefGoogle Scholar
  39. 39.
    A. Schulze-Halberg, B. Roy, Eur. Phys. J. Plus 133, 102 (2018)CrossRefGoogle Scholar
  40. 40.
    R.L. Hall, N. Saad, Ö. Yeşiltaş, J. Phys. A 43, 465304 (2010)MathSciNetCrossRefGoogle Scholar
  41. 41.
    J.F. Cariñena, A.M. Perelomov, M.F. Ra ñada, M. Santander, J. Phys. A 41, 085301 (2008)ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    C. Sabin, Sci. Rep. 7, 40346 (2017)ADSCrossRefGoogle Scholar
  43. 43.
    R.N.C. Filho, J.P.M. Braga, J.H.S. Lira, J.S. Andrade Jr., Phys. Lett. B 755, 367370 (2016)Google Scholar

Copyright information

© Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Science Faculty, Department of PhysicsGazi UniversityAnkaraTurkey

Personalised recommendations