Fractional derivatives applied to MSEIR problems: Comparative study with real world data

  • Sania QureshiEmail author
  • Abdullahi Yusuf
Regular Article


In the present study, an epidemiological model (MSEIR) of varicella disease outbreak, also called the chickenpox, among school children in the Shenzhen city of China in 2015 is proposed under three most commonly used approaches, such as the Caputo, Caputo-Fabrizio and the Atangana-Baleanu-Caputo operators, while taking care of the dimensional consistency of the proposed model. With the help of the fixed point theory, it is proved that the dynamical model under consideration possesses a unique solution. Numerical simulations are carried out for the analysis of the model. Availability of the real data helps to provide evidence for the claims made in the present analysis for the three operators under consideration. Using the root sum squared approach, the efficiency rate of the fractional-order versions is found to be about 20%, 22.5% and 24.7% for the Caputo, the Caputo-Fabrizio and the Atangana-Baleanu-Caputo operators, respectively, for this particular MSEIR model.


  1. 1.
    A.H. Reid, J.K. Taubenberger, J. Gen. Virol. 84, 2285 (2003)CrossRefGoogle Scholar
  2. 2.
    B.A. Lipsky, A.R. Berendt, P.B. Cornia, J.C. Pile, E.J. Peters, D.G. Armstrong, M.S. Pinzur, Clin. Infect. Dis. 54, 132 (2012)CrossRefGoogle Scholar
  3. 3.
    S. Altizer, A. Dobson, P. Hosseini, P. Hudson, M. Pascual, P. Rohani, Ecol. Lett. 9, 467 (2006)CrossRefGoogle Scholar
  4. 4.
    W.O. Kermack, A.G. McKendrick, Proc. R. Soc. London Series A 115, 700 (1927)ADSCrossRefGoogle Scholar
  5. 5.
    K. Diethelm, Nonlinear Dyn. 71, 613 (2013)CrossRefGoogle Scholar
  6. 6.
    S. Ullah, M.A. Khan, M. Farooq, Chaos, Solitons Fractals 116, 63 (2018)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    K.M. Owolabi, Eur. Phys. J. Plus 133, 15 (2018)CrossRefGoogle Scholar
  8. 8.
    J. Singh, D. Kumar, Z. Hammouch, A. Atangana, Appl. Math. Comput. 316, 504 (2018)MathSciNetGoogle Scholar
  9. 9.
    K.M. Owolabi, A. Atangana, Comput. Appl. Math. 37, 2166 (2018)MathSciNetCrossRefGoogle Scholar
  10. 10.
    C.J. Zuñiga-Aguilar, J.F. Gómez-Aguilar, R.F. Escobar-Jiménez, H.M. Romero-Ugalde, Eur. Phys. J. Plus 133, 13 (2018)CrossRefGoogle Scholar
  11. 11.
    K.M. Owolabi, A. Atangana, Eur. Phys. J. Plus 133, 43 (2018)CrossRefGoogle Scholar
  12. 12.
    S. Ullah, M.A. Khan, M. Farooq, Eur. Phys. J. Plus 133, 313 (2018)CrossRefGoogle Scholar
  13. 13.
    M.A. Khan, S. Ullah, M. Farooq, Chaos, Solitons Fractals 116, 227 (2018)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    M.A. Khan, S. Ullah, K.O. Okosun, K. Shah, Adv. Differ. Equ. 2018, 410 (2018)CrossRefGoogle Scholar
  15. 15.
    A. Atangana, Neural Comput. Appl. 26, 1895 (2015)CrossRefGoogle Scholar
  16. 16.
    I. Area, H. Batarfi, J. Losada, J.J. Nieto, W. Shammakh, Á. Torres, Adv. Differ. Equ. 2015, 278 (2015)CrossRefGoogle Scholar
  17. 17.
    A. Yusuf, S. Qureshi, M. Inc, A.I. Aliyu, D. Baleanu, A.A. Shaikh, Chaos 28, 123121 (2018)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    M.A. Khan, M. Farhan, S. Islam, E. Bonyah, Discr. Contin. Dyn. Syst. S 12, 455 (2019)Google Scholar
  19. 19.
    S. Qureshi, A. Yusuf, A.A. Shaikh, M. Inc, D. Baleanu, Chaos 29, 013143 (2019)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    H. Yépez-Martínez, J.F. Gómez-Aguilar, I.O. Sosa, J.M. Reyes, J. Torres-Jiménez, Rev. Mex. Fís. 62, 310 (2016)Google Scholar
  21. 21.
    A. Atangana, J.F. Gómez-Aguilar, Chaos, Solitons Fractals 114, 516 (2018)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    A. Atangana, J.F. Gómez-Aguilar, Eur. Phys. J. Plus 133, 1 (2018)CrossRefGoogle Scholar
  23. 23.
    J.F. Gómez-Aguilar, A. Atangana, Eur. Phys. J. Plus 132, 13 (2017)CrossRefGoogle Scholar
  24. 24.
    A. Coronel-Escamilla, J.F. Gómez-Aguilar, D. Baleanu, T. Córdova-Fraga, R. Escobar-Jiménez, V. Olivares-Peregrino, M. Qurashi, Entropy 19, 55 (2017)ADSCrossRefGoogle Scholar
  25. 25.
    A. Atangana, J.F. Gómez-Aguilar, Physica A 476, 1 (2017)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    A. Atangana, J.F. Gómez-Aguilar, Chaos, Solitons Fractals 102, 285 (2017)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    H. Yépez-Martínez, J.F. Gomez-Aguilar, J. Comput. Appl. Math. 346, 247 (2019)MathSciNetCrossRefGoogle Scholar
  28. 28.
    J.F. Gómez-Aguilar, H. Yépez-Martínez, C. Calderón-Ramón, I. Cruz-Orduña, R.F. Escobar-Jiménez, V.H. Olivares-Peregrino, Entropy 17, 6289 (2015)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    J.F. Gómez-Aguilar, L. Torres, H. Yépez-Martínez, D. Baleanu, J.M. Reyes, I.O. Sosa, Adv. Differ. Equ. 2016, 173 (2016)CrossRefGoogle Scholar
  30. 30.
    J.F. Gómez-Aguilar, A. Atangana, V.F. Morales-Delgado, Int. J. Circ. Theory Appl. 45, 1514 (2017)CrossRefGoogle Scholar
  31. 31.
    J.F. Gómez-Aguilar, Eur. Phys. J. Plus 133, 197 (2018)CrossRefGoogle Scholar
  32. 32.
    K.A. Abro, A.A. Memon, A.A. Memon, Analog Integr. Circ. Signal Process. 99, 11 (2019)CrossRefGoogle Scholar
  33. 33.
    O.A. Arqub, B. Maayah, Chaos, Solitons Fractals 117, 117 (2018)ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    O.A. Arqub, Numer. Methods Partial Differ. Equ. 34, 1759 (2018)MathSciNetCrossRefGoogle Scholar
  35. 35.
    K.A. Abro, A.A. Memon, M.A. Uqaili, Eur. Phys. J. Plus 133, 113 (2018)CrossRefGoogle Scholar
  36. 36.
    M.S. Osman, H. Rezazadeh, M. Eslami, A. Neirameh, M. Mirzazadeh, Univ. Politech. Bucharest Sci. Bull.-Ser. A 80, 26 (2018)Google Scholar
  37. 37.
    H. Rezazadeh, M.S. Osman, M. Eslami, M. Mirzazadeh, Q. Zhou, S.A. Badri, A. Korkmaz, Nonlinear Eng. 8, 224 (2019)ADSCrossRefGoogle Scholar
  38. 38.
    M.S. Osman, A. Korkmaz, H. Rezazadeh, M. Mirzazadeh, M. Eslami, Q. Zhou, Chin. J. Phys. 56, 2500 (2018)CrossRefGoogle Scholar
  39. 39.
    K.U. Tariq, M. Younis, H. Rezazadeh, S.T.R. Rizvi, M.S. Osman, Mod. Phys. Lett. B 32, 1850317 (2018)ADSCrossRefGoogle Scholar
  40. 40.
    M.S. Osman, Pramana 88, 67 (2017)ADSCrossRefGoogle Scholar
  41. 41.
    O.A. Arqub, M. Al-Smadi, Chaos, Solitons Fractals 117, 161 (2018)ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    H.W. Hethcote, SIAM Rev. 42, 599 (2000)ADSMathSciNetCrossRefGoogle Scholar
  43. 43.
    R. Almeida, A.M.C.B. da-Cruz, N. Martins, M.T.T. Monteiro, Int. J. Dyn. Control (2018)
  44. 44.
    I. Podlubny, Fractional Differential Equations, 1st ed. (Elsevier, 1998)Google Scholar
  45. 45.
    I. Petráš, Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation, 1st ed. (Springer-Verlag, Berlin, Heidelberg, 2011)
  46. 46.
    Z.M. Odibat, N.T. Shawagfeh, Appl. Math. Comput. 186, 286 (2007)MathSciNetGoogle Scholar
  47. 47.
    M. Caputo, M. Fabrizio, Prog. Fract. Differ. Appl. 1, 73 (2015)Google Scholar
  48. 48.
    A. Atangana, D. Baleanu, Therm. Sci. 20, 763 (2016)CrossRefGoogle Scholar
  49. 49.
    A.E. Taylor, D.C. Lay, Introduction to Functional Analysis, 2nd ed. (Wiley, New York, 1980)Google Scholar
  50. 50.
    S.C. Chapra, Applied Numerical Methods with MATLAB for Engineers and Scientists, 4th ed. (McGraw-Hill Higher Education, 2017)Google Scholar
  51. 51.
    C. Li, F. Zeng, Numerical Methods for Fractional Calculus, 1st ed. (Chapman and Hall/CRC, 2015)Google Scholar
  52. 52.
    A. Jajarmi, D. Baleanu, Chaos, Solitons Fractals 113, 221 (2018)ADSMathSciNetCrossRefGoogle Scholar
  53. 53.
    D. Baleanu, A. Jajarmi, M. Hajipour, Nonlinear Dyn. 94, 1 (2018)CrossRefGoogle Scholar
  54. 54.
    X. Tang, S. Zhao, A.P.Y. Chiu, H. Ma, X. Xie, S. Mei, D. Kong, Y. Qin, Z. Chen, X. Wang, D. He, PloS ONE 12, e0177514 (2017)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Basic Sciences and Related StudiesMehran University of Engineering and TechnologyJamshoroPakistan
  2. 2.Firat UniversityScience Faculty, Department of MathematicsElazigTurkey
  3. 3.Federal University DutseScience Faculty, Department of MathematicsJigawaNigeria

Personalised recommendations