Advertisement

Rotating vortex-like soliton in a whispering gallery mode microresonator

  • Yue-Yue WangEmail author
  • Ming-Ming Li
  • Guo-Quan Zhou
  • Yan Fan
  • Xian-Jing Lai
Regular Article
  • 36 Downloads

Abstract.

The vortex soliton has gained interest in recent years due to its intriguing potential applications in optical data storage, data processing and other areas. In this work an extensive analysis of characteristic features of the vortex-like soliton in a whispering gallery mode microresonator is carried out within the framework of the (2 + 1)-dimensional Lugiato-Lefever equation. It is found that the external pump field will cause the vortex-like solitons to rotate, and these vortex-like solitons can remain stable after increasing the white noise by 5%. Furthermore, the effects of topological charge, diffraction coefficient and self-focusing/self-defocusing nonlinearity on the properties of the vortex-like soliton in the whispering gallery mode microresonator are investigated. The results show that with the increase in topological charge, the vortex-like solitons will expand and the number of layers will increase. Finally, the breathing behavior is revealed when interaction between two vortex-like solitons occurs. Theoretical studies on vortex-like solitons dynamics indicates that WGM microresonators can serve as a powerful platform for exploring the nonlinear dynamics in optical nonlinear cavities. Our results are beneficial to the understanding of the fundamental dynamics of WGM microresonator solitons and extending their practical applications.

References

  1. 1.
    T.J. Kippenberg, R. Holzwarth, S.A. Diddams, Science 332, 555 (2011)ADSCrossRefGoogle Scholar
  2. 2.
    C.X. Xu, J. Dai, G.P. Zhu, G.Y. Zhu, Y. Lin, J.T. Li, Z. Shi, Laser Photon. Rev. 8, 469 (2014)ADSCrossRefGoogle Scholar
  3. 3.
    S.B. Papp, P. Del’Haye, S.A. Diddams, Phys. Rev. X 3, 031003 (2013)Google Scholar
  4. 4.
    J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T.J. Kippenberg, C. Koos, Nat. Photon. 8, 375 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    S.A. Diddams, L. Hollberg, V. Mbele, Nature 445, 627 (2007)CrossRefGoogle Scholar
  6. 6.
    P. Delhaye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, T.J. Kippenberg, Nature 450, 1214 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    A.V. Cherenkov, V.E. Lobanov, M.L. Gorodetsky, Phys. Rev. A 95, 033810 (2017)ADSCrossRefGoogle Scholar
  8. 8.
    T. Herr, V. Brasch, J.D. Jost, C.Y. Wang, N.M. Kondratiev, M.L. Gorodetsky et al., Nat. Photon. 8, 145 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    X. Yi, Q.F. Yang, K.Y. Yang, M.G. Suh, K. Vahala, Optica 2, 1078 (2015)CrossRefGoogle Scholar
  10. 10.
    V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. Pfeiffer, M. Gorodetsky, T. Kippenberg, Science 351, 357 (2016)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    W. Liu, M. Liu, J. Yin, H. Chen, W. Lu, S. Fang, H. Teng, M. Lei, P.G. Yan, Z.Y. Wei, Nanoscale 10, 7971 (2018)CrossRefGoogle Scholar
  12. 12.
    M.J. Schmidberger, D. Novoa, F. Biancalana, P.S. Russell, N.Y. Joly, Opt. Express 22, 3045 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    Y.K. Chembo, C.R. Menyuk, Phys. Rev. A 87, 053852 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    A. Coillet et al., IEEE Photon. J. 5, 6100409 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    G.L. Oppo, A.J. Scroggie, W.J. Firth, Phys. Rev. E 63, 066209 (2001)ADSCrossRefGoogle Scholar
  16. 16.
    J.K. Jang, M. Erkintalo, K. Luo, G.L. Oppo, S. Coen, S.G. Murdoch, Physics 18, 033034 (2016)Google Scholar
  17. 17.
    R.D.D. Bitha, A.M. Dikande, Phys. Rev. A 97, 033813 (2018)ADSCrossRefGoogle Scholar
  18. 18.
    P. Parra-Rivas, E. Knobloch, D. Gomila, L. Gelens, Phys. Rev. A 93, 063839 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    C. Bao, J.A. Jaramillo-Villegas, Y. Xuan, D.E. Leaird, M. Qi, A.M. Weiner, Phys. Rev. Lett. 117, 163901 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    G.R. Kol, Eur. Phys. J. Plus 132, 331 (2017)CrossRefGoogle Scholar
  21. 21.
    Y.Y. Wang, C.Q. Dai, G.Q. Zhou, Y. Fan, L. Chen, Nonlinear Dyn. 87, 67 (2017)CrossRefGoogle Scholar
  22. 22.
    C.Q. Dai, J.F. Zhang, Opt. Lett. 35, 2651 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    W.T. Yu, C.Y. Yang, M.L. Liu, Y.J. Zhang, W.J. Liu, Optik 159, 21 (2018)ADSCrossRefGoogle Scholar
  24. 24.
    C.Q. Dai, S.Q. Zhu, L.L. Wang, J.F. Zhang, EPL 92, 24005 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    B. Zhang, X.L. Zhang, C.Q. Dai, Nonlinear Dyn. 87, 2385 (2017)CrossRefGoogle Scholar
  26. 26.
    Y.Y. Wang, L. Chen, C.Q. Dai, J. Zheng, Y. Fan, Nonlinear Dyn. 90, 1269 (2017)CrossRefGoogle Scholar
  27. 27.
    G.Q. Zhou, G.Y. Ru, Lasers Eng. 30, 159 (2015)Google Scholar
  28. 28.
    Y.Z. Ni, G.Q. Zhou, Lasers Eng. 30, 73 (2015)Google Scholar
  29. 29.
    C.Q. Dai, D.S. Wang, L.L. Wang, J.F. Zhang, W.M. Liu, Ann. Phys. 326, 2356 (2011)ADSCrossRefGoogle Scholar
  30. 30.
    R.P. Chen, Z.Z. Chen, Y. Gao, J.P. Ding, S.L. He, Laser Photon. Rev. 11, 1700165 (2017)ADSCrossRefGoogle Scholar
  31. 31.
    G.Q. Zhou, G.Y. Ru, Prog. Electromagn. Res. 143, 143 (2013)CrossRefGoogle Scholar
  32. 32.
    C.Q. Dai, G.Q. Zhou, R.P. Chen, X.J. Lai, J. Zheng, Nonlinear Dyn. 88, 2629 (2017)CrossRefGoogle Scholar
  33. 33.
    R.P. Chen, C.Q. Dai, Nonlinear Dyn. 90, 1563 (2017)CrossRefGoogle Scholar
  34. 34.
    R.M. Caplan, Q.E. Hoq, R. Carretero-González, P.G. Kevrekidis, Opt. Commun. 282, 1399 (2009)ADSCrossRefGoogle Scholar
  35. 35.
    B. Zhao, C.Q. Dai, J.F. Zhang, Chin. Phys. Lett. 29, 084201 (2012)ADSCrossRefGoogle Scholar
  36. 36.
    I.V. Barashenkov, N.V. Alexeeva, E.V. Zemlyanaya, Phys. Rev. Lett. 89, 104101 (2002)ADSCrossRefGoogle Scholar
  37. 37.
    N.V. Alexeeva, E.V. Zemlyanaya, Nodal two-dimensional solitons in nonlinear parametric resonance, in Lecture Notes in Computer Science, Vol. 3401 (Springer, 2005) p. 91Google Scholar
  38. 38.
    E. Lucas, M. Karpov, H. Guo, M.L. Gorodetsky, T.J. Kippenberg, Nat. Commun. 8, 736 (2017)ADSCrossRefGoogle Scholar
  39. 39.
    I.V. Barashenkov, E.V. Zemlyanaya, Physica D 132, 363 (1999)ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    C.Q. Dai, J. Liu, Y. Fan, D.G. Yu, Nonlinear Dyn. 88, 1373 (2017)CrossRefGoogle Scholar
  41. 41.
    P. Grelu, N. Akhmediev, Nat. Photon. 6, 84 (2012)ADSCrossRefGoogle Scholar
  42. 42.
    W.J. Liu, C.Y. Yang, M.L. Liu, W.T. Yu, Y.J. Zhang, M. Lei, Phys. Rev. E 96, 042201 (2017)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yue-Yue Wang
    • 1
    Email author
  • Ming-Ming Li
    • 1
  • Guo-Quan Zhou
    • 1
  • Yan Fan
    • 1
  • Xian-Jing Lai
    • 2
  1. 1.Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, School of SciencesZhejiang A&F UniversityZhejiangChina
  2. 2.College of Basic ScienceZhejiang Shuren UniversityHangzhou, ZhejiangChina

Personalised recommendations