Advertisement

Solvothermal synthesis of BiVO4/WO3 heterostructures and their applicability towards electrochemical water oxidation reactions

  • P. Saraswathi
  • S. D. RamaraoEmail author
  • R. A. Kumar
  • Ch. Rajesh
  • A. V. Rao
Regular Article
  • 48 Downloads

Abstract.

Bismuth vanadate (BiVO4) and its heterostructures with tungstate (WO3) were prepared by solvothermal technique. Phase purity of these compounds was analysed by collecting powder. X-ray diffraction data revealed the co-existence of both BiVO4 and WO3 phases. Transmission electron microscopic measurements on these samples revealed that the average particles sizes of these heterostructures are in the submicron range. Optical band gap is found in the range of 2.30 to 2.45 eV by using UV-visible spectrometer. Optical spectra reveal two distinct absorption edges corresponding to both existing phases. Electrochemical activity of BiVO4 and BiVO4/WO3 heterostructures was studied using electrochemical workstation for applicability of oxygen evolution reaction (OER). These results indicate that the electrochemical activity was improved by forming heterostructures as compared with pristine compounds. From the Tafel slope analysis, it was found that the second electron transfer step is the rate determining step in OER mechanism in BiVO4/WO3 heterostructures.

References

  1. 1.
    Z.-L. Wang, D. Xu, J.-J. Xu, X.-B. Zhang, Chem. Soc. Rev. 43, 7746 (2014)CrossRefGoogle Scholar
  2. 2.
    M. Tahir, L. Pan, F. Idrees, X. Zhang, L. Wang, J.-J. Zou, Z.L. Wang, Nano Energy 3, 136 (2017)CrossRefGoogle Scholar
  3. 3.
    Y. Matsumoto, E. Sato, Mater. Chem. Phys. 14, 397 (1986)CrossRefGoogle Scholar
  4. 4.
    M.-M. Wohlfahrt, J. Heitbaum, J. Electroanal. Chem. Interf. Electrochem. 237, 251 (1987)CrossRefGoogle Scholar
  5. 5.
    M. Musiani, F. Furlanetto, R. Bertoncello, J. Electroanal. Chem. 465, 160 (1995)CrossRefGoogle Scholar
  6. 6.
    C.D. Pauli, S. Trasatti, J. Electroanal. Chem. 538, 145 (2002)CrossRefGoogle Scholar
  7. 7.
    A. Singh, L. Spiccia, Coord. Chem. Rev. 257, 2607 (2013)CrossRefGoogle Scholar
  8. 8.
    I. Katsounaros, S. Cherevko, A.R. Zeradjanin, K.J. Mayrhofer, Angew. Chem. Int. Ed. 53, 102 (2004)CrossRefGoogle Scholar
  9. 9.
    L. Trotochaud, J.K. Ranney, K.N. Williams, S.W. Boettcher, J. Am. Chem. Soc. 134, 17253 (2012)CrossRefGoogle Scholar
  10. 10.
    J.A. Seabold, K.-S. Choi, J. Am. Chem. Soc. 134, 2186 (2012)CrossRefGoogle Scholar
  11. 11.
    J. Yang, D. Wang, X. Zhou, C. Li, Chem. Eur. J. 19, 1320 (2013)CrossRefGoogle Scholar
  12. 12.
    T.W. Kim, K.-S. Choi, Science 343, 990 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    S. Tokunaga, H. Kato, A. Kudo, Chem. Mater. 13, 4624 (2001)CrossRefGoogle Scholar
  14. 14.
    J. Yu, A. Kudo, Adv. Funct. Mater. 16, 2163 (2006)CrossRefGoogle Scholar
  15. 15.
    S.J. Moniz, J. Zhu, J. Tang, Adv. Energy Mater. 4, 1301590 (2014)CrossRefGoogle Scholar
  16. 16.
    D. Eisenberg, H.S. Ahn, A.J. Bard, J. Am. Chem. Soc. 136, 14011 (2014)CrossRefGoogle Scholar
  17. 17.
    J.H. Kim, J.S. Lee, Energy Environ. Focus 3, 339 (2014)CrossRefGoogle Scholar
  18. 18.
    I. Grigioni, K.G. Stamplecoskie, E. Selli, P.V. Kamat, J. Phys. Chem. C 119, 20792 (2015)CrossRefGoogle Scholar
  19. 19.
    P. Chatchai, Y. Murakami, S.-Y. Kishioka, A.Y. Nosaka, Y. Nosaka, Electrochim. Acta 54, 1147 (2009)CrossRefGoogle Scholar
  20. 20.
    Z. Meng, A. Fujii, T. Hashishin, N. Wada, T. Sanada, J. Tamaki, K. Kojima, H. Haneoka, T. Suzuki, J. Mater. Chem. C 3, 1134 (2015)CrossRefGoogle Scholar
  21. 21.
    V. Sivakumar, R. Suresh, K. Giribabu, V. Narayanan, J. Cogent. Chem. 1, 1074647 (2015)Google Scholar
  22. 22.
    Y. Hu, D. Li, Y. Zheng, W. Chen, Y. He, Y. Shao, X. Fu, G. Xiao, J. Appl. Catal. B: Environ. 104, 30 (2001)CrossRefGoogle Scholar
  23. 23.
    W. Zhou, H. Liu, J. Wang, D. Liu, G. Du, J. Cui, ACS Appl. Mater. Interf. 2, 2385 (2010)CrossRefGoogle Scholar
  24. 24.
    Y. Meng, W. Song, H. Huang, Z. Ren, S.-Y. Chen, S.L. Suib, J. Am. Chem. Soc. 136, 11452 (2014)CrossRefGoogle Scholar
  25. 25.
    E. Guerrini, H. Chen, S. Trasatti, J. Solid State Electrochem. 11, 939 (2007)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • P. Saraswathi
    • 1
  • S. D. Ramarao
    • 1
    Email author
  • R. A. Kumar
    • 1
  • Ch. Rajesh
    • 2
  • A. V. Rao
    • 1
  1. 1.Advanced Functional Materials Research Centre, Department of PhysicsKoneru Lakshmaiah Education FoundationAndhra PradeshIndia
  2. 2.Department of PhysicsGVP College of Engineering (A)Andhra PradeshIndia

Personalised recommendations