Advertisement

Quaternionic perturbation theory

  • Stefano De LeoEmail author
  • Caio Almeida Alves de Souza
  • Gisele Ducati
Regular Article

Abstract.

In this paper we present a perturbation theory for constant quaternionic potentials. The effects of quaternionic perturbations are explicitly treated for bound states of hydrogen atom, infinite potential well and harmonic oscillator. Comparison with relativistic corrections is also briefly discussed.

References

  1. 1.
    Stefano De Leo, Gisele C. Ducati, Celso C. Nishi, J. Phys. A 35, 5411 (2002)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Stefano De Leo, Gisele C. Ducati, J. Phys. A 38, 3443 (2005)MathSciNetCrossRefGoogle Scholar
  3. 3.
    S. De Leo, G. Ducati, T. Madureira, J. Math. Phys. 47, 082106 (2006)MathSciNetCrossRefGoogle Scholar
  4. 4.
    S. De Leo, G. Ducati, J. Math. Phys. 47, 102104 (2006)MathSciNetCrossRefGoogle Scholar
  5. 5.
    S. De Leo, G. Ducati, J. Math. Phys. 48, 052111 (2007)MathSciNetCrossRefGoogle Scholar
  6. 6.
    S. De Leo, G. Ducati, J. Math. Phys. 53, 022102 (2012)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Stefano De Leo, Sergio Giardino, J. Math. Phys. 55, 022301 (2014)MathSciNetCrossRefGoogle Scholar
  8. 8.
    S. De Leo, G. Ducati, S. Giradino, J. Phys. Math. 6, 1000130 (2015)Google Scholar
  9. 9.
    H. Sobhani, H. Hassanabadi, W.S. Chung, Eur. Phys. J. C 77, 425 (2017)CrossRefGoogle Scholar
  10. 10.
    H. Hassanabadi, H. Sobhani, A. Banerjee, Eur. Phys. J. C 77, 581 (2017)CrossRefGoogle Scholar
  11. 11.
    Stephen L. Adler, Quaternionic Quantum Mechanics and Quantum Fields (Oxford University Press, 1995)Google Scholar
  12. 12.
    C. Cohen-Tannoudji, B. Diu, F. Laloë, Quantum Mechanics (Wiley-VCH, 1991)Google Scholar
  13. 13.
    C. Itzykson, J.B. Zuber, Quantum Field Theory (Dover, 1980)Google Scholar
  14. 14.
    S. De Leo, G. Scolarici, J. Phys. A 33, 2971 (2000)MathSciNetCrossRefGoogle Scholar
  15. 15.
    S. De Leo, G. Ducati, J. Math. Phys. 42, 2236 (2001)MathSciNetCrossRefGoogle Scholar
  16. 16.
    K. Knopp, Infinite Sequences and Series (Dover Publications, 1956)Google Scholar

Copyright information

© Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Stefano De Leo
    • 1
    Email author
  • Caio Almeida Alves de Souza
    • 2
  • Gisele Ducati
    • 3
  1. 1.Applied Mathematics DepartmentState University of CampinasCampinasBrazil
  2. 2.CCNHFederal University of ABCSanto AndréBrazil
  3. 3.CMCCFederal University of ABCSanto AndréBrazil

Personalised recommendations