Advertisement

Higher-order approximate periodic solution for the oscillator with strong nonlinearity of polynomial type

  • L. Cveticanin
  • G. M. IsmailEmail author
Regular Article
  • 7 Downloads

Abstract.

In this paper the harmonic balance method (HBM) is adopted for solving a special group of oscillators with strong nonlinear damping and elastic forces. The nonlinearity is of polynomial type. The motion is described with a strong nonlinear differential equation, whose approximate solution is assumed as a suitable sum of trigonometric functions. To find the most convenient combination of trigonometric functions as the probe function is the most important part of this investigation. Introducing the procedure of equating the terms with the same order of the trigonometric functions to zero, the problem is transformed into solving a system of nonlinear algebraic equations. Solving these equations the parameters of the solution up to high-order approximation are obtained. In the paper, the suggested solving procedure is applied for two nonlinear oscillator problems: free vibrations of a restrained uniform beam carrying an intermediate lumped mass and of a particle on a rotating parabola. The obtained approximate analytic solutions are compared with the already published results and with the numerically obtained solution. The solution up to third-order approximation is calculated. It is proved that the HBM with the suggested function gives more accurate results than the previous applied ones. Besides, the difference between the third-order approximate analytical solution and the numerical one is negligible. The method works well for different, even high, values of initial amplitudes.

References

  1. 1.
    L. Cveticanin, Strongly Nonlinear Oscillators-Analytical Solutions (Springer, Heidelberg, 2014)Google Scholar
  2. 2.
    L. Cveticanin, M. Zukovic, G.Y. Mester, I. Biro, J. Sarosi, Acta Mech. 227, 1727 (2016)MathSciNetCrossRefGoogle Scholar
  3. 3.
    L. Cveticanin, Appl. Math. Comput. 243, 433 (2014)MathSciNetGoogle Scholar
  4. 4.
    M. Bayat, I. Pakar, L. Cveticanin, Mech. Machine Theory 77, 50 (2014)CrossRefGoogle Scholar
  5. 5.
    Y.Y. Chen, L.E. Yan, K.Y. Sze, S.H. Chen, Appl. Math. Mech. 33, 1137 (2012)CrossRefGoogle Scholar
  6. 6.
    W. Jiang, G. Zhang, L. Chen, Appl. Math. Mech. 36, 1403 (2015)CrossRefGoogle Scholar
  7. 7.
    M.K. Yazdi, H. Ahmadian, A. Mirzabeigy, A. Yildirim, Commun. Theor. Phys. 57, 183 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    Z.J. Guo, W. Zhang, Appl. Math. Model. 40, 7195 (2016)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Y.H. Qian, J.L. Pan, Y. Qiang, J.S. Wang, J. Low Freq. Noise, Vib. Active Control (2018)  https://doi.org/10.1177/1461348418813014
  10. 10.
    P. Ju, Appl. Math. Model. 39, 2172 (2015)MathSciNetCrossRefGoogle Scholar
  11. 11.
    P. Ju, X. Xue, Appl. Math. Model. 39, 449 (2015)MathSciNetCrossRefGoogle Scholar
  12. 12.
    M. Mohammadian, M. Akbarzade, Arch. Appl. Mech. 87, 1317 (2017)ADSCrossRefGoogle Scholar
  13. 13.
    G.M. Ismail, M. Abul-Ez, N.M. Farea, N. Saad, Eur. Phys. J. Plus 134, 47 (2019)CrossRefGoogle Scholar
  14. 14.
    S.K. Lai, C.W. Lim, B.S. Wu, C. Wang, Q.C. Zeng, X.F. He, Appl. Math. Model. 33, 852 (2009)MathSciNetCrossRefGoogle Scholar
  15. 15.
    S.K. Remmi, M.M. Latha, Chin. J. Phys. 56, 2085 (2018)CrossRefGoogle Scholar
  16. 16.
    Y. Khan, A. Mirzabeigy, Neural Comput. Appl. 25, 889 (2014)CrossRefGoogle Scholar
  17. 17.
    I. Mehdipour, D.D. Ganji, M. Mozaffari, Curr. Appl. Phys. 10, 104 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    H. Askari, Z. Saadatnia, D. Younesian, A. Yildirim, M.K. Yazdi, Comput. Math. Appl. 62, 3894 (2011)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Z.F. Ren, G.F. Hu, J. Low Freq. Noise, Vib. Active Control (2018)  https://doi.org/10.1177/1461348418812327
  20. 20.
    N. Herisanu, V. Marinca, Nonlinear Sci. Lett. A 1, 183 (2010)Google Scholar
  21. 21.
    J.H. He, Chaos, Solitons Fractals 34, 1430 (2007)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    M. Bayat, I. Pakar, Smart Struct. Syst. 15, 1311 (2015)CrossRefGoogle Scholar
  23. 23.
    M. Bayat, I. Pakar, Struct. Eng. Mech. 59, 671 (2016)CrossRefGoogle Scholar
  24. 24.
    A. Yildirim, H. Askari, Z. Saadatnia, M.K. Yazdi, Y. Khan, Comput. Math. Appl. 62, 486 (2011)MathSciNetCrossRefGoogle Scholar
  25. 25.
    M. Bayat, I. Pakar, L. Cveticanin, Arch. Appl. Mech. 34, 43 (2014)CrossRefGoogle Scholar
  26. 26.
    H.M. Sedighi, K.H. Shirazi, J. Zare, Int. J. Non-Linear Mech. 47, 777 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    R.E. Mickens, J. Sound Vib. 94, 456 (1994)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    S. Karkara, B. Cochelina, C. Vergeza, J. Sound Vib. 333, 2554 (2014)ADSCrossRefGoogle Scholar
  29. 29.
    H. Molla, M. Abdur Razzak, M.S. Alam, Results Phys. 6, 238 (2016)ADSCrossRefGoogle Scholar
  30. 30.
    M.A. Hosen, M.S. Rahman, M.S. Alam, M.R. Amin, Appl. Math. Comput. 218, 5474 (2012)MathSciNetGoogle Scholar
  31. 31.
    A.H. Nayfeh, D.T. Mook, Nonlinear Oscillations (Wiley, New York, 1979)Google Scholar
  32. 32.
    M. Urabe, Galerkin’s Arch. Ration. Mech. Anal. 20, 120 (1965)ADSCrossRefGoogle Scholar
  33. 33.
    R.E. Mickens, Oscillations in Planar Dynamics Systems (World Scientific Publishing, Singapore, 1996)Google Scholar
  34. 34.
    S.B. Yamgoué, Nonlinear Dyn. 69, 1051 (2012)MathSciNetCrossRefGoogle Scholar
  35. 35.
    T.A. Nofal, G.M. Ismail, A.A. Mady, S. Abdel-Khalek, J. Electromagn. Anal. Appl. 5, 388 (2013)ADSGoogle Scholar
  36. 36.
    I. Pakar, M. Bayat, M. Bayat, Trans. Mech. Eng. 39, 273 (2015)Google Scholar
  37. 37.
    M. Mirzabeigy, M.K. Yazdi, A. Yildirim, J. Assoc. Arab Univ. Basic Appl. Sci. 13, 38 (2013)Google Scholar
  38. 38.
    M.N. Hamdan, H. Shabaneh, J. Sound Vib. 199, 711 (1997)ADSCrossRefGoogle Scholar
  39. 39.
    M.G. Sfahani, A. Barari, S.S. Ganji, G. Domairry, Houman, B. Rokni, Int. J. Adv. Manufact. Technol. 64, 1435 (2013)CrossRefGoogle Scholar
  40. 40.
    M. Bayat, I. Pakar, Shock Vib. 20, 43 (2013)CrossRefGoogle Scholar
  41. 41.
    Y.H. Qian, S.K. Lai, W. Zhang, Y. Xiang, Numer. Algorithms 58, 293 (2011)MathSciNetCrossRefGoogle Scholar
  42. 42.
    S.S. Chena, C.K. Chen, Nonlinear Anal. 10, 881 (2009)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Technical SciencesNovi SadSerbia
  2. 2.Obuda University, Doctoral School on Safety and Security SciencesBudapestHungary
  3. 3.Department of Mathematics, Faculty of ScienceSohag UniversitySohagEgypt

Personalised recommendations