Advertisement

Thermodynamic geometry and deconfinement temperature

  • P. CastorinaEmail author
  • M. Imbrosciano
  • D. Lanteri
Regular Article
  • 6 Downloads

Abstract.

The application of Riemannian geometry to the analysis of the equilibrium thermodynamics in Quantum Chromodynamics (QCD) at finite temperature and baryon density gives a new method to evaluate the critical temperature, Tc, of the deconfinement transition. In the confined phase, described by the thermodynamic geometry of the hadron resonance gas, the estimate of Tc turns out to be completely consistent with lattice QCD simulations of the quark-gluon plasma phase if the hadron excluded volume and the interaction effects are taken into account.

References

  1. 1.
    C.R. Rao, Math. Soc. 37, 81 (1945)Google Scholar
  2. 2.
    G. Ruppeiner, Phys. Rev. A 20, 1608 (1979)ADSCrossRefGoogle Scholar
  3. 3.
    G. Ruppeiner, Rev. Mod. Phys. 67, 605 (1995) 68ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    G. Ruppeiner, A. Sahay, T. Sarkar, G. Sengupta, Phys. Rev. E 86, 052103 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    H.-O. May, P. Mausbach, G. Ruppeiner, Phys. Rev. E 88, 032123 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    H.-O. May, P. Mausbach, Phys. Rev. E 85, 031201 (2012) 86ADSCrossRefGoogle Scholar
  7. 7.
    A. Dey, P. Roy, T. Sarkar, Physica A 392, 6341 (2013)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    P. Chaturvedi, A. Das, G. Sengupta, Eur. Phys. J. C 77, 110 (2017)ADSCrossRefGoogle Scholar
  9. 9.
    A. Sahay, R. Jha, Phys. Rev. D 96, 126017 (2017)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    P. Castorina, M. Imbrosciano, D. Lanteri, Phys. Rev. D 98, 096006 (2018)ADSCrossRefGoogle Scholar
  11. 11.
    A. Bazavov et al., Phys. Rev. D 95, 054504 (2017)ADSCrossRefGoogle Scholar
  12. 12.
    G. Ruppeiner, N. Dyjack, A. McAloon, J. Stoops, J. Chem. Phys. 146, 224501 (2017)ADSCrossRefGoogle Scholar
  13. 13.
    P. Steinbrecher, Nucl. Phys. A 982, 847 (2019)ADSCrossRefGoogle Scholar
  14. 14.
    M. Floris, Nucl. Phys. A 931, 103 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    STAR Collaboration (S. Das), EPJ Web of Conferences 90, 08007 (2015)CrossRefGoogle Scholar
  16. 16.
    STAR Collaboration (L. Adamczyk et al.), Phys. Rev. C 96, 044904 (2017)ADSCrossRefGoogle Scholar
  17. 17.
    L.M. Satarov, V. Vovchenko, P. Alba, M.I. Gorenstein, H. Stoecker, Phys. Rev. C 95, 024902 (2017)ADSCrossRefGoogle Scholar
  18. 18.
    N.F. Carnahan, K.E. Starling, J. Chem. Phys. 51, 635 (1969)ADSCrossRefGoogle Scholar
  19. 19.
    V. Vovchenko, Phys. Rev. C 96, 015206 (2017)ADSCrossRefGoogle Scholar
  20. 20.
    V. Vovchenko, D.V. Anchishkin, M.I. Gorenstein, J. Phys. A 48, 305001 (2015)MathSciNetCrossRefGoogle Scholar
  21. 21.
    V. Vovchenko, M.I. Gorenstein, H. Stoecker, Phys. Rev. Lett. 118, 182301 (2017)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.INFNSezione di CataniaCataniaItaly
  2. 2.Dipartimento di FisicaUniversità di CataniaCataniaItaly
  3. 3.Institute of Particle and Nuclear Physics, Faculty of Mathematics and PhysicsCharles University V Holešovičkách 2Prague 8Czech Republic

Personalised recommendations