Advertisement

Impact of synthesis routes on normal and inverse magnetocaloric effects and critical behaviour in the charge-ordered Pr0.5Sr0.5MnO3 manganite

  • A. Sakka
  • R. M’nassriEmail author
  • S. Tarhouni
  • W. Cheikhrouhou-Koubaa
  • N. Chniba-Boudjada
  • M. Oumezzine
  • A. Cheikhrouhou
Regular Article
  • 4 Downloads

Abstract.

We investigated the effect of both synthesis routes on the physical properties of charge-ordered Pr0.5Sr0.5MnO3 (PSMO) manganites. The samples are prepared by the solid-state reaction (SSR) and the modified sol-gel (SG) method. X-ray diffraction (XRD), SEM and magnetic measurement are used to study the structural, morphological, magnetic, magnetocaloric effect and the critical behaviour of our manganites. XRD studies confirmed the single phase orthorhombic formation of PSMO. Both compounds undergo two successive magnetic phase transitions with the variation of temperature: a paramagnetic (PM)-to-ferromagnetic (FM) transition around \( T_{\rm C}=265\) and 243K followed by an FM-to-antiferromagnetic charge-ordered transition at \( T_{\rm CO}=85\) and 159K for the SG and SSR methods, respectively. Moreover, Banerjee's criteria, Landau analysis and universal curves of phase transitions are also studied to access the magnetic ordering of the PM-FM transition in the samples and confirmed the second-order character. Critical exponents associated with the ferromagnetic phase transition are analyzed and found to be inconsistent with any known universality class. Important magnetic entropy changes and the relative cooling power (RCP) were observed in the sample synthesized through the solid state method as compared to the sol-gel-synthesized sample. The PSMO compounds show both negative ( \( \Delta S_{\rm M}=-1.63813\) J/kgK for SSR and -1.1 for SG) as well as positive ( \( \Delta S_{\rm M}=+5.82\) J/kgK for SSR and +1.52 for SG) magnetocaloric effects under a 2T field at ferromagnetic and charge order transitions, respectively. This feature of successive inverse and normal MCEs in Pr0.5Sr0.5MnO3 are suggested to be applied in some magnetic refrigerators with special designs and functions.

References

  1. 1.
    A.M. Tishin, I. Spichkin, The Magnetocaloric Effect and Its Applications (IoP, Bristol, 2003)Google Scholar
  2. 2.
    E. Brück, J. Phys. D 38, R381 (2005)CrossRefGoogle Scholar
  3. 3.
    X. Bohigas, J. Tejada, E. Del Barco, X.X. Zhang, M. Sales, Appl. Phys. Lett. 73, 390 (1998)ADSCrossRefGoogle Scholar
  4. 4.
    A. Szewczyk, H. Szymczak, A. Wisnieski, K. Piotrowski, Appl. Phys. Lett. 77, 1026 (2000)ADSCrossRefGoogle Scholar
  5. 5.
    Soma Das, T.K. Dey, J. Alloys Compd. 440, 30 (2007)CrossRefGoogle Scholar
  6. 6.
    M.H. Phan, S.C. Yu, J. Magn. & Magn. Mater. 308, 325 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    C.N.R. Rao, G.V. Subba Rao, Phys. Status Solidi 1, 597 (1970)ADSCrossRefGoogle Scholar
  8. 8.
    D.B. Meadowcroft, Nature 226, 847 (1970)ADSCrossRefGoogle Scholar
  9. 9.
    T. Krenke, E. Duman, M. Acet, E.F. Wassermann, X. Moya, L. Manosa, A. Planes, Nat. Mater. 4, 450 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    A. Biswas, S. Chandra, T. Samanta, B. Ghosh, S. Datta, M.H. Phan, A.K. Raychaudhuri, I. Das, H. Srikanth, Phys. Rev. B 87, 134420 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    P. Alvarez-Alonso, P. Gorria, J.A. Blanco, J.S. Anchez-Marcos, G.J. Cuello, I. Puente-Orench, J.A. Rodriguez-Velamazan, G. Garbarino, I. de Pedro, J.R. Fernandez, J.L.S. Llamazares, Phys. Rev. B 86, 184411 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    C. Krishnamoorthi, S.K. Barik, S. Ziu, R. Mahendiran, Solid State Commun. 150, 1670 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    S. Karmakar, E. Bose, S. Taran, B.K. Chaudhuri, C.P. Sun, H.D. Yang, J. Appl. Phys. 103, 023901 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    Xixiang Zhang, Bei Zhang, Shuyun Yu, Zhuhong Liu, Wenjin Xu, Guodong Liu, Jinglan Chen, Zexian Cao, Guangheng Wu, Phys. Rev. B 76, 132403 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    J.M.D. Coey, M. Viret, S. Von Molnar, Adv. Phys. 48, 167 (1999)ADSCrossRefGoogle Scholar
  16. 16.
    H. Ben Khlifa, F. Ayadi, R. Mʼnassri, W. Cheikhrouhou-Koubaa, G. Schmerber, A. Cheikhrouhou, J. Alloys Compd. 712, 451 (2017)CrossRefGoogle Scholar
  17. 17.
    H.B. Khlifa, R. Mʼnassri, W. Cheikhrouhou-Koubaa, E.K. Hlil, A. Cheikhrouhou, Ceram. Int. 43, 1853 (2017)CrossRefGoogle Scholar
  18. 18.
    R. Mʼnassri, W. Cheikhrouhou-Koubaa, M. Koubaa, N. Boudjada, A. Cheikhrouhou, Solid State Commun. 151, 1579 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    R. Mʼnassri, W. Cheikhrouhou-Koubaa, M. Koubaa, A. Cheikhrouhou, IOP Conf. Ser.: Mater. Sci. Eng. 28, 012050 (2012)Google Scholar
  20. 20.
    A. Selmi, R. Mʼnassri, W. Cheikhrouhou-Koubaa, N. Chniba Boudjada, A. Cheikhrouhou, Ceram. Int. 41, 10177 (2015)CrossRefGoogle Scholar
  21. 21.
    M. Bourouinaa, A. Krichene, N. Chniba-Boudjadab, M. Khitouni, W. Boujelben, Ceram. Int. 43, 8139 (2017)CrossRefGoogle Scholar
  22. 22.
    Vuk Uskoković, Miha Drofenik, Mater. Des. 28, 667 (2007)CrossRefGoogle Scholar
  23. 23.
    W.A. Sun, J.Q. Li, W.Q. Ao, J.N. Tang, X.Z. Gong, Powder Technol. 166, 77 (2006)CrossRefGoogle Scholar
  24. 24.
    R. Mʼnassri, N. Chniba Boudjada, A. Cheikhrouhou, J. Alloys Compd. 626, 20 (2015)CrossRefGoogle Scholar
  25. 25.
    A. Sakka, R. Mʼnassri, N. Chniba-Boudjada, M. Oumezzine, A. Cheikhrouhou, Appl. Phys. A 122, 603 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    M. Santiago T., H. Montiel, L.E. Hernández C., G. Álvarez, Maricela Villanueva-Ibáñez, M.A. Flores González, Mater. Sci. Forum 691, 139 (2011)CrossRefGoogle Scholar
  27. 27.
    P. Raychaudhuri, S. Mukherjee, A.K. Nigam, J. John, U.D. Vaisnav, R. Pinto, P. Mandal, J. Appl. Phys. 86, 5718 (1999)ADSCrossRefGoogle Scholar
  28. 28.
    M. Pechini, Method of preparing lead and alkaline earth titanates and niobates and coating method using the same to form a capacitor, US Patent 3330697 (1967)Google Scholar
  29. 29.
    H.M. Rietveld, J. Appl. Crystallogr. 2, 65 (1969)CrossRefGoogle Scholar
  30. 30.
    T. Roisnel, J. Rodríguez-Carvajal, WinPLOTR: a Windows tool for powder diffraction analysis, in Materials Science Forum. Proceedings of the European Powder Diffraction Conference (EPDIC 7) (EPDIC, 2001)Google Scholar
  31. 31.
    J.H. Kuo, H.U. Anderson, D.M. Sparlin, J. Solid State Chem. 83, 52 (1989)ADSCrossRefGoogle Scholar
  32. 32.
    P. Shiffer, A.P. Ramirez, W. Bao et al., Phys. Rev. Lett. 75, 3336 (1995)ADSCrossRefGoogle Scholar
  33. 33.
    N. Zaidi, S. Mnefgui, J. Dhahri, E.K. Hlil, RSC Adv. 5, 31901 (2015)CrossRefGoogle Scholar
  34. 34.
    V.M. Goldschmit, Geochem. Verteil. Element 7, 8 (1927–1928)Google Scholar
  35. 35.
    R.D. Shannon, Acta Cryst. A 32, 751 (1976)CrossRefGoogle Scholar
  36. 36.
    F. Ayadi, W. Cheikhrouhou-Koubaa, M. Koubaa, S. Nowaka, L. Sicard, S. Ammar, A. Cheikhrouhou, Mater. Chem. Phys. 145, 56 (2014)CrossRefGoogle Scholar
  37. 37.
    Nguyen The Hien, Nguyen Phu Thuy, Physica B 319, 168 (2002)ADSCrossRefGoogle Scholar
  38. 38.
    M. Medarde, J. Mesot, P. Lacorre, S. Rosenkranz, P. Fischer, K. Gobrecht, Phys. Rev. B 52, 9248 (1995)ADSCrossRefGoogle Scholar
  39. 39.
    Y. Moritomo, H. Kuwahara, Y. Tomioka, Y. Tokura, Phys. Rev. B 55, 7549 (1997)ADSCrossRefGoogle Scholar
  40. 40.
    A.H. Morrish, The Physical Principles of Magnetism (IEEE Press, New York, 2001)Google Scholar
  41. 41.
    S. Mahjoub, M. Baazaoui, R. Mʼnassri, H. Rahmouni, N. Chniba Boudjada, M. Oumezzine, J. Alloys Compd. 608, 191 (2014)CrossRefGoogle Scholar
  42. 42.
    R.P. Borges, F. Ott, R.M. Thomas, V. Skumryev, J.M.D. Coey, J.I. Arnaudas, L. Ranno, Phys. Rev. B 60, 12847 (1999)ADSCrossRefGoogle Scholar
  43. 43.
    S. Choura-Maatar, R. Mʼnassri, W. Cheikhrouhou-Koubaa, M. Koubaa, A. Cheikhrouhou, E.K. Hlil, RSC Adv. 7, 50347 (2017)CrossRefGoogle Scholar
  44. 44.
    B. Uthaman, K.S. Anand, R.K. Rajan, H.H. Kyaw, S. Thomas, S.A. Harthi, K.G. Suresh, M.R. Varma, RSC Adv. 5, 86144 (2015)CrossRefGoogle Scholar
  45. 45.
    J. Mira, J. Rivas, M. Vazquez, J.M. Garcia-Beneytez, J. Arcas, R.D. Sanchez, M.A. Senaris-Rodriguez, Phys. Rev. B 59, 123 (1999)ADSCrossRefGoogle Scholar
  46. 46.
    B.K. Banerjee, Phys. Lett. 12, 16 (1964)ADSCrossRefGoogle Scholar
  47. 47.
    J.L. Zhao, J. Shen, B.G. Shen, F.X. Hu, J.R. Sun, Solid State Commun. 150, 2329 (2010)ADSCrossRefGoogle Scholar
  48. 48.
    X.B. Liu, D.H. Ryan, Z. Altounian, J. Magn. & Magn. Mater. 270, 305 (2004)ADSCrossRefGoogle Scholar
  49. 49.
    V.K. Pecharsky, K.A. Gschneidner jr., A.O. Pecharsky, A.M. Tishin, Phys. Rev. B 64, 144406 (2001)ADSCrossRefGoogle Scholar
  50. 50.
    R.D. McMichael, J.J. Ritter, R.D. Shull, J. Appl. Phys. 73, 6946 (1993)ADSCrossRefGoogle Scholar
  51. 51.
    M.S. Reis, V.S. Amaral, J.P. Araujo, P.B. Tavares, A.M. Gomes, I.S. Oliveira, Phys. Rev. B 71, 144413 (2005)ADSCrossRefGoogle Scholar
  52. 52.
    P. Sande, L.E. Hueso, D.R. Miguens, J. Rivas, F. Rivadulla, M.A. López-Quintela, Appl. Phys. Lett. 79, 2040 (2001)ADSCrossRefGoogle Scholar
  53. 53.
    V.K. Pecharsky, K.A. Gschneidner, Annu. Rev. Mater. Sci. 30, 387 (2000)ADSCrossRefGoogle Scholar
  54. 54.
    R. Mʼnassri, Eur. Phys. J. Plus 131, 392 (2016)ADSCrossRefGoogle Scholar
  55. 55.
    R. Mʼnassri, Phase Trans. 90, 687 (2017)CrossRefGoogle Scholar
  56. 56.
    V.K. Pecharsky, K.A. Gschneidner, A.O. Tsokol, Rep. Prog. Phys. 68, 1479 (2005)ADSCrossRefGoogle Scholar
  57. 57.
    V.K. Pecharsky jr., K.A. Gschneidner, Phys. Rev. Lett. 78, 4494 (1997)ADSCrossRefGoogle Scholar
  58. 58.
    V.K. Pecharsky jr., K.A. Gschneidner, J. Magn. & Magn. Mater. 167, L179 (1997)ADSCrossRefGoogle Scholar
  59. 59.
    R. Mʼnassri, N. Chniba-Boudjada, A. Cheikhrouhou, Ceram. Int. 42, 7447 (2016)CrossRefGoogle Scholar
  60. 60.
    V. Franco, J.S. Blazquez, A. Conde, Appl. Phys. Lett. 89, 222512 (2006)ADSCrossRefGoogle Scholar
  61. 61.
    C.M. Bonilla, J. Herrero-Albillos, F. Bartolome, L.M. Garcia, M. Parra-Borderias, V. Franco, Phys. Rev. B 81, 224424 (2010)ADSCrossRefGoogle Scholar
  62. 62.
    F. Saadaoui, R. Mʼnassri, H. Omrani, M. Koubaa, N. Chniba-Boudjada, A. Cheikhrouhou, RSC Adv. 6, 50968 (2016)CrossRefGoogle Scholar
  63. 63.
    R. Mʼnassri, M. Khelifi, H. Rahmouni, A. Selmi, K. Khirouni, N. Chniba-Boudjada, Ceram. Int. 42, 6145 (2016)CrossRefGoogle Scholar
  64. 64.
    V. Franco, A. Conde, V. Provenzano, R.D. Shull, J. Magn. & Magn. Mater. 322, 218 (2010)ADSCrossRefGoogle Scholar
  65. 65.
    C.M. Bonilla, F. Bartolome, L.M. Garcia, M. Parra-Borderias, J. Herrero-Albillos, V. Franco, J. Appl. Phys. 107, 09E131 (2010)CrossRefGoogle Scholar
  66. 66.
    M. Foldeaki, R. Chahine, T.K. Bose, J. Appl. Phys. 77, 3528 (1995)ADSCrossRefGoogle Scholar
  67. 67.
    R. Mʼnassri, A. Cheikhrouhou, J. Supercond. Novel Magn. 27, 1059 (2014)CrossRefGoogle Scholar
  68. 68.
    X.X. Zhang, G.H. Wen, F.W. Wang, W.H. Wang, C.H. Yu et al., Appl. Phys. Lett. 77, 3072 (2000)ADSCrossRefGoogle Scholar
  69. 69.
    R. Mʼnassri, A. Cheikhrouhou, J. Kor. Phys. Soc. 64, 879 (2014)CrossRefGoogle Scholar
  70. 70.
    B. Widom, J. Chem. Phys. 43, 3892 (1965)ADSCrossRefGoogle Scholar
  71. 71.
    A.K. Pramanik, A. Banerjee, Phys. Rev. B 79, 214426 (2009)ADSCrossRefGoogle Scholar
  72. 72.
    R. Venkatesh, R. Nirmala, G. Rangarajan, S.K. Malik, V. Sankaranarayanan, J. Appl. Phys. 99, 08Q311 (2006)CrossRefGoogle Scholar
  73. 73.
    J. Fan, L. Pi, L. Zhang, W. Tong, L. Ling, B. Hong, Y. Shi, W. Zhang, D. Lu, Y. Zhang, Appl. Phys. Lett. 98, 072508 (2011)ADSCrossRefGoogle Scholar
  74. 74.
    V. Franco, A. Conde, Int. J. Ref. 33, 465 (2010)CrossRefGoogle Scholar
  75. 75.
    The-Long Phan, N.T. Dang, T.A. Ho, T.V. Manh, T.D. Thanh, C.U. Jung, B.W. Lee, Anh-Tuan Le, Anh D. Phan, S.C. Yu, J. Alloys Compd. 657, 818 (2016)CrossRefGoogle Scholar
  76. 76.
    H. Oesterreicher, F.T. Parker, J. Appl. Phys. 55, 4336 (1984)ADSCrossRefGoogle Scholar
  77. 77.
    R. Mʼnassri, N. Chniba-Boudjada, A. Cheikhrouhou, J. Alloys Compd. 640, 183 (2015)CrossRefGoogle Scholar
  78. 78.
    The-Long Phan, P. Zhang, T.D. Thanh, S.C. Yu, J. Appl. Phys. 115, 17A912 (2014)CrossRefGoogle Scholar
  79. 79.
    R. Mʼnassri, A. Selmi, N. Chniba Boudjada, A. Cheikhrouhou, J. Therm. Anal. Calorim. 129, 53 (2017)CrossRefGoogle Scholar
  80. 80.
    V. Franco, J.S. Blazquez, A. Conde, J. Appl. Phys. 103, 07B316 (2008)CrossRefGoogle Scholar
  81. 81.
    A. Hankey, H.E. Stanley, Phys. Rev. B 6, 3515 (1972)ADSCrossRefGoogle Scholar
  82. 82.
    S. Tarhouni, R. Mʼnassri, A. Mleiki, W. Cheikhrouhou-Koubaa, A. Cheikhrouhoua, E.K. Hlil, RSC Adv. 8, 18294 (2018)CrossRefGoogle Scholar
  83. 83.
    V.S. Amaral, J.S. Amaral, J. Magn. & Magn. Mater. 272, 2104 (2004)ADSCrossRefGoogle Scholar
  84. 84.
    S. Mahjoub, M. Baazaoui, R. Mʼnassri, E.K. Hlil, M. Oumezzine, J. Alloys Compd. 680, 381 (2016)CrossRefGoogle Scholar
  85. 85.
    R. Mʼnassri, W. Cheikhrouhou-Koubaa, N. Chniba-Boudjada, A. Cheikhrouhou, J. Appl. Phys. 113, 073905 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratoire de Physico-Chimie des Matériaux, Département de Physique, Faculté des Sciences de Monastir 5019Université de MonastirMonastirTunisia
  2. 2.Unité de recherche Matériaux Avancés et Nanotechnologies (URMAN), Institut Supérieur des Sciences Appliquées et de Technologie de KasserineKairouan UniversityKasserineTunisia
  3. 3.LT2S Lab, Digital Research Centre of SfaxSfax TechnoparkSakiet-EzzitTunisia
  4. 4.Institut NEELGrenoble Cedex 9France

Personalised recommendations