Advertisement

Structural and optical studies of CaSO4:Ce3+ nanorods for display and dosimetric applications

  • Yashaswini
  • C. Pandurangappa
  • N. DhananjayaEmail author
Regular Article
  • 15 Downloads

Abstract.

The CaSO4:Ce3+ (1-9mol%) nanorods were successfully synthesized by co-precipitation method. Preliminary crystallographic, structural and optical studies of the prepared nanorods were done using powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), Fourier transform infrared spectroscopy (FTIR), UV-visible absorption spectroscopy, photoluminescence (PL) and thermoluminescence (TL). The CaSO4:Ce3+ has a single phase hexagonal lattice structure with space group P3121(152). The average crystallite size was calculated using Scherrer’s formula and found to be in the range 41-62 nm which is in good agreement with TEM results. The SEM micrographs shows rod like structure with various sizes. Upon 350 nm excitation, the CaSO4:Ce3+ nanophosphor showed emission at 390, 405 and 430 nm, which is characteristic luminescence of \(5{\rm d} \rightarrow 4{\rm f}\)(2F5/2, 2F7/2) transitions of the Ce3+ ions. The chromaticity co-ordinates and correlated color temperature of all the phosphors were well located in blue region. TL glow curve response of the prepared nanorods with 500 Gy \(\gamma\)-irradiated was studied. TL glow curve contains glow peak at 188 °C. Kinetic parameters was estimated for deconvoluted TL glow peaks and studied in detail.

References

  1. 1.
    R.J. Danby, H. Keith, N.B. Manson, J. Lumin. 42, 83 (1988)CrossRefGoogle Scholar
  2. 2.
    A.K. Bakshi, S.J. Patwe, M.K. Bhide, B. Sanyal, V. Natarajan, A.K. Tyagi, R.K. Kher, J. Appl. Phys. 41, 1 (2008)Google Scholar
  3. 3.
    S. Lee, J. Kim, C.H. Lee, J. Membr. Sci. 163, 63 (1999)CrossRefGoogle Scholar
  4. 4.
    M. Maghrabi, T. Karali, P.D. Townsend, A.R. Lakshmanan, J. Phys. D 33, 477 (2000)ADSCrossRefGoogle Scholar
  5. 5.
    B.K.S. Nair, D. Sundar, A. Tomita, W. Hoffmann, A.R. Lakshmanan, J. Lumin. 86, 67 (2000)CrossRefGoogle Scholar
  6. 6.
    R.L. Calvert, R.J. Danby, Phys. Status Solidi A 83, 597 (1984)ADSCrossRefGoogle Scholar
  7. 7.
    A.R. Lakshmanan, Prog. Mater. Sci. 44, 1 (1999)CrossRefGoogle Scholar
  8. 8.
    A.R. Lakshmanan, Phys. Status Solidi A 186, 153 (2001)ADSCrossRefGoogle Scholar
  9. 9.
    Y. Horowitz, Thermoluminescence and Thermoluminescence Dosimetry (CRC Press, Boca Raton, 1984)Google Scholar
  10. 10.
    K.S.V. Nambi, V.N. Bapat, A.K. Ganguly, J. Phys. C 7, 4403 (1974)ADSCrossRefGoogle Scholar
  11. 11.
    K. Schmidt, H. Linemann, R. Giessing, in Proceedings of the 4th International Conference, Vol. 1 (Krakow, Poland, 1974)Google Scholar
  12. 12.
    M.S. Atone, S.J. Dhoble, S.V. Moharil, S.M. Dhopte, P.L. Muthal, V.K. Kondawar, Phys. Status Solidi A 135, 299 (1993)ADSCrossRefGoogle Scholar
  13. 13.
    A.R. Lakshmanan, S.B. Kim, H.M. Jang, B.G. Kum, B.K. Kang, S. Heo, D. Seo, Adv. Funct. Mater. 17, 212 (2007)CrossRefGoogle Scholar
  14. 14.
    N. Salah, P.D. Sahare, S.P. Lochab, P. Kumar, Radiat. Meas. 41, 40 (2006)CrossRefGoogle Scholar
  15. 15.
    N. Salah, P.D. Sahare, Radiat. Meas. 41, 665 (2006)CrossRefGoogle Scholar
  16. 16.
    N. Yamashita, T. Hamada, M. Takada, M. Katsuki, M. Nakagawa, Jpn. J. Appl. Phys. 40, 6732 (2001)ADSCrossRefGoogle Scholar
  17. 17.
    M. Zahedifar, M. Mehrabi, Nucl. Instrum. Methods Phys. Res. B 268, 3517 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    B.S.K. Nair, D. Sundar, A. Tomita, W. Hoffmann, A.R. Lakshmanan, J. Lumin. 86, 67 (2000)CrossRefGoogle Scholar
  19. 19.
    AartiMuley, R.R. Patil, S.V. Moharil, J. Lumin. 128, 509 (2008)CrossRefGoogle Scholar
  20. 20.
    Li-Xia Yang, Yan-Feng Meng, Ping Yin, Ying-Xia Yang, Ying-Ying Tang, Lai-Fen Quin, Bull. Mater. Sci. 34, 233 (2011)CrossRefGoogle Scholar
  21. 21.
    W. Abriel, Acta Crystallogr. C 39, 956 (1983)CrossRefGoogle Scholar
  22. 22.
    B.D. Cullity, Elements of X-ray Diffraction, 2nd edition (Addison-Wesley Publishing Company, USA, 1956)Google Scholar
  23. 23.
    S. Phokha, S. Pinitsoontorn, P. Chirawatkul, Y. Poo-Arporn, S. Maensiri, Nanoscale Res. Lett. 7, 425 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    G.K. William, W.H. Hall, Acta Metall. 1, 22 (1953)CrossRefGoogle Scholar
  25. 25.
    P.L. Anto, R.J. Anto, H.T. Varghese, Ç.Y. Panicker, D. Philip, A.G. Brolo, J. Raman Spectrosc. 40, 1810 (2009)ADSCrossRefGoogle Scholar
  26. 26.
    B. Sutter, J.B. Dalton, S.A. Ewing, R. Amundson, C.P. Mckay, J. Geophys. Res. Biogeosci. 112, 1 (2007)CrossRefGoogle Scholar
  27. 27.
    Y.L. Ryskin, Infrared Spectr. Miner. 4, 137 (1974)CrossRefGoogle Scholar
  28. 28.
    R. David Lide, CRC Handbook of Chemistry and Physics, 84th edition (CRC Press, USA, 2004)Google Scholar
  29. 29.
    T. Rajh, L.X. Chen, K. Lukas, T. Liu, M.C. Thurnauer, D.M. Tiede, J. Phys. Chem. B 106, 10543 (2002)CrossRefGoogle Scholar
  30. 30.
    Chinmay Hazra, Sarang Bari, Debasree Kundu, Ambalal Chaudhari, Satyendra Mishra, Aniruddha Chatterjee, Ultrason. Sonochem 21, 1117 (2014)CrossRefGoogle Scholar
  31. 31.
    Yun Chen, Qingsheng Wu, Colloids Surf. A: Physicochem. Eng. Aspects 325, 33 (2008)CrossRefGoogle Scholar
  32. 32.
    J. Tauc, Optical Properties of Solids (North-Holland, Amsterdam, 1970)Google Scholar
  33. 33.
    Yashaswini, C. Pandurangappa, N. Dhananjaya, M.V. Murugendrappa., Int. J. Nanotech. 14, 845 (2017)CrossRefGoogle Scholar
  34. 34.
    S.S. Sanaye, B.S. Dhabekar, R. Kumar, S.N. Menon, S.S. Shinde, T.K. Gundu Rao, B.C. Bhatt, J. Lumin. 105, 1 (2003)CrossRefGoogle Scholar
  35. 35.
    M. Zahedifara, M. Mehrabi, Nucl. Instrum. Methods Phys. Res. B 268, 3517 (2010)ADSCrossRefGoogle Scholar
  36. 36.
    Colorimetry, 2nd Edition (Commission Internationale de L'Eclairage, Vienna, 1986)Google Scholar
  37. 37.
    J. Schanda, M. Danyi, Color Res. Appl. 2, 161 (1977)CrossRefGoogle Scholar
  38. 38.
    N. Dhananjaya, C. Shivakumara, Rohit Saraf, H. Nagabhushana, Mater. Res. Bull. 75, 100 (2016)CrossRefGoogle Scholar
  39. 39.
    C.S. Mc Camy, Color Res. Appl. 17, 142 (1992)CrossRefGoogle Scholar
  40. 40.
    X. Xu, Y. Tang, F. Mo, L. Zhoun, B. Li, Ceram. Int. 40, 10887 (2014)CrossRefGoogle Scholar
  41. 41.
    G.F.J. Garlic, A.F. Gibson, Proc. Phys. Soc. 60, 574 (1984)ADSCrossRefGoogle Scholar
  42. 42.
    R. Chen, J. Electrochem. Soc. 116, 1254 (1969)CrossRefGoogle Scholar
  43. 43.
    C.B. Lushchik, Sov. Phys. JETF 3, 390 (1956)Google Scholar
  44. 44.
    A. Halperin, A. Braner, J. Appl. Phys. Rev. 117, 408 (1960)ADSGoogle Scholar
  45. 45.
    R. Chen, J. Appl. Phys. 40, 570 (1969)ADSCrossRefGoogle Scholar
  46. 46.
    J.T. Randall, H.M.F. Wilkins, Proc. R. Soc. 184, 365 (1945)ADSCrossRefGoogle Scholar
  47. 47.
    M.S. Jahan, D.W. Cooke, W.L. Hults, J. Lumin. 47, 85 (1990)CrossRefGoogle Scholar
  48. 48.
    C. Furretta, Handbook of Thermoluminescences (World Scientific Publishing, Singapore, 2003)Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsB.M.S. Institute of Technology and ManagementBangaloreIndia
  2. 2.Department of PhysicsR.N.S Institute of TechnologyBangaloreIndia

Personalised recommendations