Advertisement

Recent progress in gas separation using functionalized graphene nanopores and nanoporous graphene oxide membranes

  • F. Malekian
  • H. GhafourianEmail author
  • K. Zare
  • A. A. Sharif
  • Y. Zamani
Review
  • 19 Downloads

Abstract.

Carbon nanomaterials such as nanopores graphene, functionalized graphene and graphene oxide membranes and so forth, have attracted much attention for not only scientific interest but also various application expectations. Gas separation, including gas storage, carbon dioxide capture, flue gas purification and natural gas sweetening through nanopores is of great interest and the porous materials particularly nanoporous graphene, functionalized graphene nanopores and nanoporous graphene oxide membranes are widely utilized in this phenomenon. Nanoporous graphene, functionalized graphene nanopores and nanoporous graphene oxide membranes with narrow pore distribution, provide exciting opportunities in gas separation processes. These membranes are an excellent platform for developing size-selective membranes and exhibit unique gas separation properties. This paper reviews potential applications of nanoporous graphene, functionalized graphene nanopores and nanoporous graphene oxide based membranes for gas separation on the basis of theoretical studies. The properties of porous graphene have been discussed in first section. The second and third sections provide the recent advances in theoretical studies of nanoporous graphene, functionalized graphene nanopores and nanoporous graphene oxide membranes in gas separation, respectively.

References

  1. 1.
    N.D. Mermin, Phys. Rev. 176, 250 (1968)ADSCrossRefGoogle Scholar
  2. 2.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    C.N. Rao, A.K. Sood, K.S. Subrahmanyam, A. Govindaraj, Angew. Chem., Int. Ed. 48, 7752 (2009)CrossRefGoogle Scholar
  4. 4.
    S. Stankovich, D.A. Dikin, G.H. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Nature 442, 282 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    W. Liu, J.-y. Liu, J. Xia, H.-q. Lin, M.-s. Miao, Nanoscale 10, 11328 (2018)CrossRefGoogle Scholar
  6. 6.
    Y. Zhang, Y.-W. Tan, H.L. Stormer, P. Kim, Nature 438, 201 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    D. Li, R.B. Kaner, Nat. Nanotechnol. 3, 101 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    A.C. Neto, F. Guinea, N.M. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    Y. Zhang, C. Pan, Diamond Relat. Mater. 24, 1 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    A. Juneja, G. Rajasekaran, Phys. Chem. Chem. Phys. 20, 15203 (2018)CrossRefGoogle Scholar
  11. 11.
    A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Nano Lett. 8, 902 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    D. Ghosh, I. Calizo, D. Teweldebrhan, E.P. Pokatilov, D.L. Nika, A.A. Balandin, W. Bao, F. Miao, C.N. Lau, Appl. Phys. Lett. 92, 151911 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    Y. Shao, J. Wang, H. Wu, J. Liu, I.A. Aksay, Y. Lin, Electroanalysis 22, 1027 (2010)CrossRefGoogle Scholar
  14. 14.
    L. Sun, Y. Zhang, Y. Wang, Y. Yang, C. Zhang, X. Weng, S. Zhu, X. Yuan, Nanoscale 10, 1759 (2018)CrossRefGoogle Scholar
  15. 15.
    R. Westervelt, Science 320, 324 (2008)CrossRefGoogle Scholar
  16. 16.
    X. Li, L. Tao, Z. Chen, H. Fang, X. Li, X. Wang, J.-B. Xu, H. Zhu, Appl. Phys. Rev. 4, 021306 (2017)ADSCrossRefGoogle Scholar
  17. 17.
    D.A. Dikin, S. Stankovich, E.J. Zimney, R.D. Piner, G.H. Dommett, G. Evmenenko, S.T. Nguyen, R.S. Ruoff, Nature 448, 457 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    K. Novoselov, D. Jiang, F. Schedin, T. Booth, V. Khotkevich, S. Morozov, A. Geim, Proc. Natl. Acad. Sci. 102, 10451 (2005)ADSCrossRefGoogle Scholar
  19. 19.
    C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A.N. Marchenkov, Science 312, 1191 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    B. Yu, B. Zheng, X. Wang, F. Qi, J. He, W. Zhang, Y. Chen, Appl. Surf. Sci. 400, 420 (2017)ADSCrossRefGoogle Scholar
  21. 21.
    B.M. Kamel, A. Mohamed, M. El Sherbiny, K. Abed, M. Abd-Rabou, J. Disper. Sci. Technol. 38, 1495 (2017)CrossRefGoogle Scholar
  22. 22.
    E.W. Hill, A. Vijayaragahvan, K. Novoselov, Graphene sensors, IEEE Sens. J. 11, 3161 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    C. Rao, K. Gopalakrishnan, U. Maitra, ACS Appl. Mater. Interfaces 7, 7809 (2015)CrossRefGoogle Scholar
  24. 24.
    H. Bai, C. Li, G. Shi, Adv. Mater. 23, 1089 (2011)CrossRefGoogle Scholar
  25. 25.
    S.M. Fatemi, M. Foroutan, J. Nanostruct. Chem. 5, 4 (2015)Google Scholar
  26. 26.
    D.A. Brownson, C.E. Banks, Analyst 135, 2768 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    J.J. Yoo, K. Balakrishnan, J. Huang, V. Meunier, B.G. Sumpter, A. Srivastava, M. Conway, A.L. Mohana Reddy, J. Yu, R. Vajtai, Nano Lett. 11, 1423 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    H. Shen, L. Zhang, M. Liu, Z. Zhang, Theranostics 2, 283 (2012)CrossRefGoogle Scholar
  29. 29.
    K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, B.H. Hong, Nature 457, 706 (2009)ADSCrossRefGoogle Scholar
  30. 30.
    H.M. Hegab, L. Zou, J. Membr. Sci. 484, 95 (2015)CrossRefGoogle Scholar
  31. 31.
    Y. Wang, Z. He, K.M. Gupta, Q. Shi, R. Lu, Carbon 116, 120 (2017)CrossRefGoogle Scholar
  32. 32.
    X. Cui, C. Zhang, R. Hao, Y. Hou, Nanoscale 3, 2118 (2011)ADSCrossRefGoogle Scholar
  33. 33.
    K. Yang, L. Feng, X. Shi, Z. Liu, Chem. Soc. Rev. 42, 530 (2013)CrossRefGoogle Scholar
  34. 34.
    F. Bonaccorso, Z. Sun, T. Hasan, A. Ferrari, Nat. Photon. 4, 611 (2010)ADSCrossRefGoogle Scholar
  35. 35.
    D.A. Brownson, D.K. Kampouris, C.E. Banks, J. Power Sources 196, 4873 (2011)ADSCrossRefGoogle Scholar
  36. 36.
    X. Sun, Z. Liu, K. Welsher, J.T. Robinson, A. Goodwin, S. Zaric, H. Dai, Nano Res. 1, 203 (2008)CrossRefGoogle Scholar
  37. 37.
    A. Silva, M. Pires, V. Freire, E. Albuquerque, D. Azevedo, E.W.S. Caetano, J. Phys. Chem. C 114, 17472 (2010)CrossRefGoogle Scholar
  38. 38.
    X. Wang, L. Zhi, K. Müllen, Nano Lett. 8, 323 (2008)ADSCrossRefGoogle Scholar
  39. 39.
    M. Foroutan, S.M. Fatemi, F. Shokouh, J. Mol. Graphics Modell. 66, 85 (2016)CrossRefGoogle Scholar
  40. 40.
    M. Foroutan, S.M. Fatemi, F. Esmaeilian, Eur. Phys. J. E 40, 19 (2017)CrossRefGoogle Scholar
  41. 41.
    M. Foroutan, S.M. Fatemi, F. Esmaeilian, V. Fadaei Naeini, M. Baniassadi, Phys. Fluids 30, 052101 (2018)ADSCrossRefGoogle Scholar
  42. 42.
    M. Foroutan, M. Darvishi, S.M. Fatemi, Phys. Rev. E 96, 033312 (2017)ADSCrossRefGoogle Scholar
  43. 43.
    M. Foroutan, S.M. Fatemi, F. Esmaeilian, V.F. Naeini, Langmuir 34, 14085 (2018)CrossRefGoogle Scholar
  44. 44.
    P.-Y. Zhai, H.-J. Peng, X.-B. Cheng, L. Zhu, J.-Q. Huang, W. Zhu, Q. Zhang, Energy Storage Mater. 7, 56 (2017)CrossRefGoogle Scholar
  45. 45.
    H.-J. Qiu, Y. Guan, P. Luo, Y. Wang, Biosens. Bioelectron. 89, 85 (2017)CrossRefGoogle Scholar
  46. 46.
    S. Han, D. Wu, S. Li, F. Zhang, X. Feng, Adv. Mater. 26, 849 (2014)CrossRefGoogle Scholar
  47. 47.
    X. Zhang, H. Zhang, C. Li, K. Wang, X. Sun, Y. Ma, RSC Adv. 4, 45862 (2014)CrossRefGoogle Scholar
  48. 48.
    Z. Niu, L. Liu, L. Zhang, X. Chen, Small 10, 3434 (2014)CrossRefGoogle Scholar
  49. 49.
    S. Fatemi, M. Foroutan, Int. J. Environ. Sci. Technol. 13, 457 (2016)CrossRefGoogle Scholar
  50. 50.
    S.M. Fruehwirth, R. Meyer, A.W. Hauser, ChemPhysChem 19, 2331 (2018)CrossRefGoogle Scholar
  51. 51.
    D. Ke, J. Wang, H. Zhang, Y. Li, L. Zhang, X. Zhao, S. Han, Int. J. Hydrogen Energy 42, 26617 (2017)CrossRefGoogle Scholar
  52. 52.
    S.M. Fatemi, Z. Abbasi, H. Rajabzadeh, S.A. Hashemizadeh, A.N. Deldar, Eur. Phys. J. D 71, 194 (2017)ADSCrossRefGoogle Scholar
  53. 53.
    S.M. Fatemi, A. Baniasadi, M. Moradi, J. Korean Phys. Soc. 71, 54 (2017)ADSCrossRefGoogle Scholar
  54. 54.
    A. Agius Anastasi, K. Ritos, G. Cassar, M.K. Borg, Mol. Simul. 42, 1502 (2016)CrossRefGoogle Scholar
  55. 55.
    Y. Liu, X. Chen, J. Appl. Phys. 115, 034303 (2014)ADSCrossRefGoogle Scholar
  56. 56.
    H. Zhao, K. Min, N. Aluru, Nano Lett. 9, 3012 (2009)ADSCrossRefGoogle Scholar
  57. 57.
    Z. Ni, H. Bu, M. Zou, H. Yi, K. Bi, Y. Chen, Phys. B 405, 1301 (2010)ADSCrossRefGoogle Scholar
  58. 58.
    Y.I. Jhon, Y.M. Jhon, G.Y. Yeom, M.S. Jhon, Carbon 66, 619 (2014)CrossRefGoogle Scholar
  59. 59.
    M. Dewapriya, A.S. Phani, R. Rajapakse, Modell. Simul. Mater. Sci. Eng. 21, 065017 (2013)ADSCrossRefGoogle Scholar
  60. 60.
    L. Xu, N. Wei, Y. Zheng, Nanotechnology 24, 505703 (2013)ADSCrossRefGoogle Scholar
  61. 61.
    A. Ito, S. Okamoto, Eng. Lett. 20, 3 (2012)Google Scholar
  62. 62.
    M. Dewapriya, R. Rajapakse, A. Phani, Int. J. Fract. 187, 199 (2014)CrossRefGoogle Scholar
  63. 63.
    S.M. Fatemi, M. Foroutan, Adv. Sci., Eng. Med. 6, 583 (2014)CrossRefGoogle Scholar
  64. 64.
    S.M. Fatemi, M. Foroutan, J. Theor. Comput. Chem. 13, 1450063 (2014)CrossRefGoogle Scholar
  65. 65.
    S.M. Fatemi, M. Foroutan, J. Nanostruct. Chem. 5, 243 (2015)CrossRefGoogle Scholar
  66. 66.
    S.M. Fatemi, M. Foroutan, J. Colloid Sci. Biotechnol. 2, 40 (2013)CrossRefGoogle Scholar
  67. 67.
    S.M. Fatemi, M. Foroutan, J. Iran. Chem. Soc. 12, 1905 (2015)CrossRefGoogle Scholar
  68. 68.
    S.M. Fatemi, M. Foroutan, J. Iran. Chem. Soc. 14, 269 (2017)CrossRefGoogle Scholar
  69. 69.
    S.M. Fatemi, M. Foroutan, J. Adv. Phys. 5, 129 (2016)CrossRefGoogle Scholar
  70. 70.
    S.M. Fatemi, M. Foroutan, J. Nanostruct. Chem. 6, 29 (2016)CrossRefGoogle Scholar
  71. 71.
    L. Liu, D. Nicholson, S.K. Bhatia, Carbon 125, 245 (2017)CrossRefGoogle Scholar
  72. 72.
    S. Majumdar, M. Maurya, J.K. Singh, Energy Fuels 32, 6090 (2018)CrossRefGoogle Scholar
  73. 73.
    P.R. Kidambi, R.A. Terry, L. Wang, M.S. Boutilier, D. Jang, J. Kong, R. Karnik, Nanoscale 9, 8496 (2017)CrossRefGoogle Scholar
  74. 74.
    Q. Yang, Y. Su, C. Chi, C. Cherian, K. Huang, V. Kravets, F. Wang, J. Zhang, A. Pratt, A. Grigorenko, Nat. Mater. 16, 1198 (2017)ADSCrossRefGoogle Scholar
  75. 75.
    S. Esfandiarpoor, M. Fazli, M.D. Ganji, Sci. Rep. 7, 16561 (2017)ADSCrossRefGoogle Scholar
  76. 76.
    C. Jiang, Y. Hou, N. Wang, L. Li, L. Lin, Q.J. Niu, J. Taiwan Inst. Chem. Eng. 78, 477 (2017)CrossRefGoogle Scholar
  77. 77.
    H. Li, X. Ding, Y. Zhang, J. Liu, J. Membr. Sci. 543, 58 (2017)CrossRefGoogle Scholar
  78. 78.
    K.A. Cychosz, M. Thommes, Engineering 4, 559 (2018)CrossRefGoogle Scholar
  79. 79.
    M. Chen, F. Soyekwo, Q. Zhang, C. Hu, A. Zhu, Q. Liu, J. Ind. Eng. Chem. 63, 296 (2018)CrossRefGoogle Scholar
  80. 80.
    M. Maurya, J.K. Singh, J. Phys. Chem. C 122, 14654 (2018)CrossRefGoogle Scholar
  81. 81.
    W. Li, S. Samarasinghe, T.-H. Bae, J. Ind. Eng. Chem. 67, 156 (2018)CrossRefGoogle Scholar
  82. 82.
    A.F. Ibrahim, Y. Lin, Chem. Eng. Sci. 190, 312 (2018)CrossRefGoogle Scholar
  83. 83.
    R. Rea, S. Ligi, M. Christian, V. Morandi, M. Giacinti Baschetti, M.G. De Angelis, Polymers 10, 129 (2018)CrossRefGoogle Scholar
  84. 84.
    A. Ibrahim, Y. Lin, J. Membr. Sci. 550, 238 (2018)CrossRefGoogle Scholar
  85. 85.
    A. Ambrosetti, P.L. Silvestrelli, J. Phys. Chem. C 118, 19172 (2014)CrossRefGoogle Scholar
  86. 86.
    I. Erucar, S. Keskin, Front. Mater. 5, 4 (2018)CrossRefGoogle Scholar
  87. 87.
    T.M. Al-Jadir, F.R. Siperstein, Microporous Mesoporous Mater. 271, 160 (2018)CrossRefGoogle Scholar
  88. 88.
    W. Zhao, J. Bai, J.S. Francisco, X.C. Zeng, J. Phys. Chem. C 122, 7951 (2018)CrossRefGoogle Scholar
  89. 89.
    F.D. Lahoz-Martín, A. Martin-Calvo, J.J. Gutiérrez-Sevillano, S. Calero, J. Phys. Chem. C 122, 8637 (2018)CrossRefGoogle Scholar
  90. 90.
    M. Foroutan, S.M. Fatemi, M. Darvishi, J. Phys.: Condens. Matter 30, 415001 (2018)Google Scholar
  91. 91.
    M. Foroutan, M. Darvishi, S.M. Fatemi, K.H. Babazadeh, J. Mol. Liq. 250, 344 (2018)CrossRefGoogle Scholar
  92. 92.
    S.M. Fatemi, M. Foroutan, Iran. J. Chem. Chem. Eng. 35, 1 (2016)Google Scholar
  93. 93.
    D.-e. Jiang, V.R. Cooper, S. Dai, Nano Lett. 9, 4019 (2009)ADSCrossRefGoogle Scholar
  94. 94.
    S.P. Koenig, L. Wang, J. Pellegrino, J.S. Bunch, Nat. Nanotechnol. 7, 728 (2012)ADSCrossRefGoogle Scholar
  95. 95.
    A.W. Hauser, J. Schrier, P. Schwerdtfeger, J. Phys. Chem. C 116, 10819 (2012)CrossRefGoogle Scholar
  96. 96.
    J. Schrier, J. McClain, Chem. Phys. Lett. 521, 118 (2012)ADSCrossRefGoogle Scholar
  97. 97.
    S.M. Fatemi, M. Foroutan, Fluid Phase Equilib. 384, 73 (2014)CrossRefGoogle Scholar
  98. 98.
    A.W. Hauser, P. Schwerdtfeger, J. Phys. Chem. lett. 3, 209 (2012)CrossRefGoogle Scholar
  99. 99.
    M. Hankel, Y. Jiao, A. Du, S.K. Gray, S.C. Smith, J. Phys. Chem. C 116, 6672 (2012)CrossRefGoogle Scholar
  100. 100.
    M. Mirbagheri, R.J. Hill, Ind. Eng. Chem. Res. 56, 4517 (2017)CrossRefGoogle Scholar
  101. 101.
    S.-M. Wang, Y.-X. Yu, G.-H. Gao, J. Membr. Sci. 271, 140 (2006)CrossRefGoogle Scholar
  102. 102.
    H. Liu, S. Dai, D.-e. Jiang, Solid State Commun. 175, 101 (2013)ADSCrossRefGoogle Scholar
  103. 103.
    S. Wang, S. Dai, D.-e. Jiang, ACS Appl. Nano Mater. 2, 379 (2019)CrossRefGoogle Scholar
  104. 104.
    N. Mehio, S. Dai, D.-e. Jiang, J. Phys. Chem. A 118, 1150 (2014)CrossRefGoogle Scholar
  105. 105.
    S. Wang, Z. Tian, S. Dai, D.-e. Jiang, J. Phys. Chem. C 121, 22025 (2017)CrossRefGoogle Scholar
  106. 106.
    C. Sun, M.S. Boutilier, H. Au, P. Poesio, B. Bai, R. Karnik, N.G. Hadjiconstantinou, Langmuir 30, 675 (2014)CrossRefGoogle Scholar
  107. 107.
    L.W. Drahushuk, M.S. Strano, Langmuir 28, 16671 (2012)CrossRefGoogle Scholar
  108. 108.
    T. Wu, A. Firoozabadi, J. Phys. Chem. C 2018, 20727 (2018)CrossRefGoogle Scholar
  109. 109.
    S. Wang, Z. Tian, S. Dai, D.-e. Jiang, Nanoscale 10, 14660 (2018)CrossRefGoogle Scholar
  110. 110.
    S.M. Fatemi, H. Sepehrian, M. Arabieh, Eur. Phys. J. Plus 131, 131 (2016)CrossRefGoogle Scholar
  111. 111.
    S.M. Fatemi, H. Sepehrian, M. Arabieh, J. Adv. Phys. 6, 10 (2017)CrossRefGoogle Scholar
  112. 112.
    B. Raghavan, T. Gupta, J. Phys. Chem. C 121, 1904 (2017)CrossRefGoogle Scholar
  113. 113.
    C. Sun, B. Bai, Chem. Eng. Sci. 165, 186 (2017)CrossRefGoogle Scholar
  114. 114.
    A. Pedrielli, S. Taioli, G. Garberoglio, N.M. Pugno, Microporous Mesoporous Mater. 257, 222 (2018)CrossRefGoogle Scholar
  115. 115.
    Q. Shi, Z. He, K.M. Gupta, Y. Wang, R. Lu, J. Mater. Sci. 52, 173 (2017)ADSCrossRefGoogle Scholar
  116. 116.
    J. Abraham, K.S. Vasu, C.D. Williams, K. Gopinadhan, Y. Su, C.T. Cherian, J. Dix, E. Prestat, S.J. Haigh, I.V. Grigorieva, Nat. Nanotechnol. 12, 546 (2017)ADSCrossRefGoogle Scholar
  117. 117.
    Y. Hu, Y. Wu, C. Devendran, J. Wei, Y. Liang, M. Matsukata, W. Shen, A. Neild, H. Huang, H. Wang, J. Mater. Chem. A 5, 16255 (2017)CrossRefGoogle Scholar
  118. 118.
    G. Luo, L. Liu, J. Zhang, G. Li, B. Wang, J. Zhao, ACS Appl. Mater. Interfaces 5, 11184 (2013)CrossRefGoogle Scholar
  119. 119.
    X. Zhang, J. Xin, F. Ding, Nanoscale 5, 2556 (2013)ADSCrossRefGoogle Scholar
  120. 120.
    A. Anand, B. Unnikrishnan, J.-Y. Mao, H.-J. Lin, C.-C. Huang, Desalination 429, 119 (2018)CrossRefGoogle Scholar
  121. 121.
    M. Shan, Q. Xue, N. Jing, C. Ling, T. Zhang, Z. Yan, J. Zheng, Nanoscale 4, 5477 (2012)ADSCrossRefGoogle Scholar
  122. 122.
    Y.-J. Yu, Y. Zhao, S. Ryu, L.E. Brus, K.S. Kim, P. Kim, Nano Lett. 9, 3430 (2009)ADSCrossRefGoogle Scholar
  123. 123.
    T. Wu, Q. Xue, C. Ling, M. Shan, Z. Liu, Y. Tao, X. Li, J. Phys. Chem. C 118, 7369 (2014)CrossRefGoogle Scholar
  124. 124.
    C. Sun, B. Bai, Sci. Bull. 62, 554 (2017)CrossRefGoogle Scholar
  125. 125.
    F. Vallejos-Burgos, F.-X. Coudert, K. Kaneko, Nat. Commun. 9, 1812 (2018)ADSCrossRefGoogle Scholar
  126. 126.
    Y. Wang, Q. Yang, C. Zhong, J. Li, Appl. Surf. Sci. 407, 532 (2017)ADSCrossRefGoogle Scholar
  127. 127.
    A.W. Hauser, P. Schwerdtfeger, Phys. Chem. Chem. Phys. 14, 13292 (2012)CrossRefGoogle Scholar
  128. 128.
    J. Azamat, A. Khataee, S.W. Joo, Chem. Eng. Sci. 127, 285 (2015)CrossRefGoogle Scholar
  129. 129.
    D. Cohen-Tanugi, J.C. Grossman, Nano Lett. 12, 3602 (2012)ADSCrossRefGoogle Scholar
  130. 130.
    Q. Chen, X. Yang, J. Membr. Sci. 496, 108 (2015)CrossRefGoogle Scholar
  131. 131.
    R. Jafarzadeh, J. Azamat, H. Erfan-Niya, Struct. Chem. 29, 1845 (2018)CrossRefGoogle Scholar
  132. 132.
    K. Nieszporek, M. Drach, Phys. Chem. Chem. Phys. 17, 1018 (2015)CrossRefGoogle Scholar
  133. 133.
    C. Sun, B. Wen, B. Bai, Chem. Eng. Sci. 138, 616 (2015)CrossRefGoogle Scholar
  134. 134.
    S. Wei, S. Zhou, Z. Wu, M. Wang, Z. Wang, W. Guo, X. Lu, Appl. Surf. Sci. 441, 631 (2018)ADSCrossRefGoogle Scholar
  135. 135.
    Y. Wang, W. Wang, S. Zhu, L. Guo, Z. Zhang, P. Li, Comput. Mater. Sci. 143, 277 (2018)CrossRefGoogle Scholar
  136. 136.
    S. Wang, Y. Xie, G. He, Q. Xin, J. Zhang, L. Yang, Y. Li, H. Wu, Y. Zhang, M.D. Guiver, Angew. Chem., Int. Ed. 56, 14246 (2017)CrossRefGoogle Scholar
  137. 137.
    M. Jia, Y. Feng, S. Liu, J. Qiu, J. Yao, J. Membr. Sci. 539, 172 (2017)CrossRefGoogle Scholar
  138. 138.
    L.-C. Lin, J.C. Grossman, Nat. Commun. 6, 8335 (2015)CrossRefGoogle Scholar
  139. 139.
    M. Arabieh, S.M. Fatemi, H. Sepehrian, Chem. Prod. Process Model. 11, 3 (2016)Google Scholar
  140. 140.
    S.M. Fatemi, M. Arabieh, H. Sepehrian, Carbon Lett. 16, 183 (2015)CrossRefGoogle Scholar
  141. 141.
    A. Khakpay, F. Rahmani, S. Nouranian, P. Scovazzo, J. Phys. Chem. C 121, 12308 (2017)CrossRefGoogle Scholar
  142. 142.
    W. Li, X. Zheng, Z. Dong, C. Li, W. Wang, Y. Yan, J. Zhang, J. Phys. Chem. C 120, 26061 (2016)CrossRefGoogle Scholar
  143. 143.
    Q. Liu, K.M. Gupta, Q. Xu, G. Liu, W. Jin, Sep. Purif. Technol. 209, 419 (2019)CrossRefGoogle Scholar
  144. 144.
    H. Zheng, L. Zhu, D. He, T. Guo, X. Li, X. Chang, Q. Xue, Int. J. Hydrogen Energy 42, 30653 (2017)CrossRefGoogle Scholar
  145. 145.
    L. Wang, J. Zhao, L. Wang, T. Yan, Y.-Y. Sun, S.B. Zhang, Phys. Chem. Chem. Phys. 13, 21126 (2011)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • F. Malekian
    • 1
  • H. Ghafourian
    • 2
    Email author
  • K. Zare
    • 3
  • A. A. Sharif
    • 4
  • Y. Zamani
    • 5
  1. 1.Department of Chemistry, Science and Research BranchIslamic Azad UniversityTehranIran
  2. 2.Department of Environmental Engineering, Tehran North BranchIslamic Azad UniversityTehranIran
  3. 3.Department of Chemistry, Science and Research BranchIslamic Azad UniversityTehranIran
  4. 4.Faculty of Chemistry, Tehran North BranchIslamic Azad UniversityTehranIran
  5. 5.Research Institute of Petroleum IndustryTehranIran

Personalised recommendations