Advertisement

Lifetime of carbyne-based nanodevices: size and “even-odd” effects

  • Sergiy KotrechkoEmail author
  • Andrei Timoshevskii
  • Eugene Kolyvoshko
  • Yuriy Matviychuk
  • Nataliya Stetsenko
  • Baode Zhang
Regular Article
  • 14 Downloads
Part of the following topical collections:
  1. Focus Point on Nanotechnology, Nanomaterials and Interfaces

Abstract.

The existence of both size and “even-odd” effects for the lifetime of carbyne-based nanodevices consisting of two graphene sheets connected by a carbyne chain is predicted. Based on the results of DFT-calculations, it is ascertained that appearance of a region where equilibrium positions of atoms are impossible is a key feature of the failure of carbyne-based nanodevices under mechanical loading. This region appears before the chain is broken. It is the reason for the effect of mechanical load on the “even-odd” effect for lifetime. For a wide range of temperatures and mechanical loads, a lower estimate of the lifetimes of carbyne-based nanodevices is given, which supports the possibility of their practical use.

References

  1. 1.
    J. van Ruitenbeek, Physics 2, 42 (2009)CrossRefGoogle Scholar
  2. 2.
    V. Singh, D. Joung, L. Zhai, S. Das, S.I. Khondaker, S. Seal, Prog. Mater. Sci. 56, 1178 (2011)CrossRefGoogle Scholar
  3. 3.
    F. Banhart, Beilstain J. Nanotechnol. 6, 559 (2015)CrossRefGoogle Scholar
  4. 4.
    I. Mikhailovskij, E. Sadanov, S. Kotrechko, V. Ksenofontov, T. Mazilova, Phys. Rev. B 87, 045410 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    A. Timoshevskii, S. Kotrechko, Yu. Matviychuk, Phys. Rev. B 91, 245434 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    C. Lee, X. Wei, J.W. Kysar, J. Hone, Science 321, 385 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    M.C. Marinica, C. Barreteau, D. Spanjaard, M.C. Desjonqueres, Phys. Rev. B 72, 115402 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    I.W.M. Smith, Chem. Soc. Rev. 37, 812 (2008)CrossRefGoogle Scholar
  9. 9.
    W. Meyer, H.Z. Neldel, Tech. Phys. (Leipzig) 12, 588 (1937)Google Scholar
  10. 10.
    G. Boisvert, L.J. Lewis, A. Yelon, Phys. Rev. Lett. 75, 469 (1995)ADSCrossRefGoogle Scholar
  11. 11.
    Z.Z. Lin, W.F. Yu, Y. Wang, X.J. Ning, EPL 94, 40002 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    T. Zhu, J. Li, A. Samanta, A. Leach, K. Gall, Phys. Rev. Lett. 100, 025502 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    H. Zhao, N.R. Aluru, J. Appl. Phys. 108, 064321 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    S. Cahangirov, M. Topsakal, S. Ciraci, Phys. Rev. B 82, 195444 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    Z.Z. Lin, J. Zhuang, X.J. Ning, EPL 97, 27006 (2012)CrossRefGoogle Scholar
  16. 16.
    S. Kotrechko, A. Timoshevskii, E. Kolyvoshko, Yu. Matviychuk, N. Stetsenko, Nanoscale Res. Lett. 12, 327 (2017)ADSCrossRefGoogle Scholar
  17. 17.
    P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni et al., J. Phys. Condens. Matter 21, 395502 (2009)CrossRefGoogle Scholar
  18. 18.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)ADSCrossRefGoogle Scholar
  19. 19.
  20. 20.
    H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    R. Fletcher, Practical Methods of Optimization (Wiley, New York, 1987)Google Scholar
  22. 22.
    S.R. Billeter, A. Curioni, W. Andreoni, Comput. Mater. Sci. 27, 437 (2003)CrossRefGoogle Scholar
  23. 23.
    K.S. Pitzer, E. Clementi, J. Am. Chem. Soc. 81, 4477 (1959)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.G.V. Kurdyumov Institute for Metal PhysicsKyivUkraine
  2. 2.Taras Shevchenko Kyiv National UniversityKyivUkraine
  3. 3.Institute of PhysicsAlbert-Ludwig-University of FreiburgFreiburgGermany

Personalised recommendations