Advertisement

Effects of using obstacles on the dam-break flow based on entropy generation analysis

  • Hassan Saghi
  • Esmail LakzianEmail author
Regular Article
  • 30 Downloads

Abstract.

In the present research, the entropy generation analysis has been done in the dam-break flow with obstacles in different shapes. The damage to the downstream of dams is done by fluid energy. So, entropy generation was introduced as a measurement criterion of destruction. In this way, a numerical model has been developed to evaluate the dam-break phenomenon. In the developed model, the governing equations were discretized and solved using the simplified marker and cell method. Free-surface tracking has been done using the volume-of-fluid method. Based on the results, the averaged entropy generation is maximized, when square obstacles are installed at a distance of \( d_o/H_0=1.8\)-1.9. In this equation, do is the distance between dam and obstacle, and H0 is the water depth. The results also show that the averaged entropy generation is maximized when the sidewall angle of the triangle obstacle is increased. However, based on the stability analysis, the sidewall angle of the triangle obstacle must be less than \( 55^{\circ}\). Therefore, the triangle obstacle with \( 55^{\circ}\) sidewall angle is suggested as the optimum obstacle.

References

  1. 1.
    H. Saghi, M.J. Ketabdari, M. Zamirian, Appl. Math. Model. 37, 570 (2013)MathSciNetCrossRefGoogle Scholar
  2. 2.
    H. Saghi, M.J. Ketabdari, J. Mar. Sci. Appl. 11, 417 (2012)CrossRefGoogle Scholar
  3. 3.
    H. Saghi, Int. J. Naval Architect. Ocean Eng. 8, 153 (2016)CrossRefGoogle Scholar
  4. 4.
    M.J. Ketabdari, H. Saghi, Appl. Math. Comput. 224, 123 (2013)MathSciNetGoogle Scholar
  5. 5.
    M.J. Ketabdari, H. Saghi, Int. J. Comput. Methods 10, 1350046 (2013)MathSciNetCrossRefGoogle Scholar
  6. 6.
    M.J. Ketabdari, H. Saghi, H. Rezaei, K. Rezanejad, KSCE J. Civ. Eng. 19, 805 (2015)CrossRefGoogle Scholar
  7. 7.
    M.J. Ketabdari, H. Saghi, J. Ocean Univ. China 12, 23 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    M.J. Ketabdari, H. Saghi, Iran. J. Mar. Sci. Technol. 18, 33 (2012)Google Scholar
  9. 9.
    H. Saghi, Sharif J. Mech. Eng. 34, 13 (2018)Google Scholar
  10. 10.
    H. Saghi, A. Hashemian, Comput. Math. Appl. 76, 2496 (2018)MathSciNetCrossRefGoogle Scholar
  11. 11.
    R. Marsooli, W. Wu, Adv. Water Res. 70, 104 (2014)CrossRefGoogle Scholar
  12. 12.
    T. Fondelli, A. Andreini, B. Facchini, Energy Proc. 82, 309 (2015)CrossRefGoogle Scholar
  13. 13.
    T. Zhang, L. Peng, P. Feng, Comput. Fluids 160, 64 (2018)MathSciNetCrossRefGoogle Scholar
  14. 14.
    C.H. Tony, W.H. Sheu, Comput. Phys. Commun. 221, 1 (2017)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    W. Lai, A.A. Khan, J. Hydrodyn. Ser. B 24, 467 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    S.L. Razavi toosi, S.A. Ayyoubzadeh, A.R. Valizadeh, Int. J. Sediment Res. 29, 344 (2014)CrossRefGoogle Scholar
  17. 17.
    T.J. Chang, M. Kao, K.H. Chang, M.H. HSU, J. Hydrol. 408, 78 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    M. Prakash, K. Rothauge, P.W. Cleary, Appl. Math. Model. 38, 5515 (2014)CrossRefGoogle Scholar
  19. 19.
    L. Wang, C. Pan, J. Hydrodyn. Ser. B 26, 902 (2015)CrossRefGoogle Scholar
  20. 20.
    L. Cozzolino, L. Cimorelli, C. Covell, R. Della Morte, D. Pianese, Adv. Water Res. 80, 90 (2015)CrossRefGoogle Scholar
  21. 21.
    B. Wang, Y. Chen, C. Wu, Y. Peng, X. Ma, J. Song, J. Hydro-environ. Res. 14, 93 (2017)CrossRefGoogle Scholar
  22. 22.
    O. Seyedashraf, A. Rezaei, A.A. Akhtari, Ocean Eng. 142, 125 (2017)CrossRefGoogle Scholar
  23. 23.
    X. Li, J. Zhao, Powder Technol. 338, 493 (2018)CrossRefGoogle Scholar
  24. 24.
    N.J. Balmforth, R.V. Craster, P. Prona, A.C. Rust, R. Sassi, J. Non-Newtonian Fluid Mech. 142, 63 (2007)CrossRefGoogle Scholar
  25. 25.
    G.P. Matson, A.J. Hogg, J. Non-Newtonian Fluid Mech. 142, 79 (2007)CrossRefGoogle Scholar
  26. 26.
    Z. He, T. Wu, H. Weng, P. Hu, G. Wu, Int. J. Sediment Res. 32, 105 (2017)CrossRefGoogle Scholar
  27. 27.
    A. Issakhov, Y. Zhandaulet, A. Nogaeva, Int. J. Multiphase Flow 109, 191 (2018)MathSciNetCrossRefGoogle Scholar
  28. 28.
    H. Ozmen-Cagatay, S. Kocaman, H. Guzel, J. Hydro-environ. Res. 8, 304 (2014)CrossRefGoogle Scholar
  29. 29.
    A. Bejan, J. Heat Transf. 101, 718 (1979)CrossRefGoogle Scholar
  30. 30.
    E. Lakzian, A. Masjedi, Int. J. Exergy 14, 22 (2014)CrossRefGoogle Scholar
  31. 31.
    E. Lakzian, A. Shabani, Int. J. Exergy 13, 383 (2015)CrossRefGoogle Scholar
  32. 32.
    A. Lotfi, E. Lakzian, Eur. Phys. J. Plus 131, 123 (2016)CrossRefGoogle Scholar
  33. 33.
    R. Soltanmohammadi, E. Lakzian, Meccanica 51, 1713 (2016)CrossRefGoogle Scholar
  34. 34.
    E. Lakzian, R. Soltanmohammadi, M. Nazeryan, Sci. Iran. B 23, 2673 (2016)Google Scholar
  35. 35.
    A. Bejan, Entropy Generation Minimization: The Method of Thermodynamic Optimization of Finite-Size Systems and Finite-Time Processes (CRC Press, Boca Raton, 2013)  https://doi.org/10.1201/9781482239171
  36. 36.
    O. Mahian, A. Kianifar, A.Z. Sahin, S. Wongwises, J. Heat Transf. 137, 061011 (2015)CrossRefGoogle Scholar
  37. 37.
    O. Mahian, S. Mahmud, S. Wongwises, J. Thermophy. Heat Transf. 27, 161 (2013)CrossRefGoogle Scholar
  38. 38.
    R. Ebrahimi, N. Sakenian Dehkordi, J. Therm. Anal. Calorim. 133, 1609 (2018)CrossRefGoogle Scholar
  39. 39.
    H. Saghi, M.J. Ketabdari, S. Booshi, Appl. Math. Mech. 33, 1179 (2012)CrossRefGoogle Scholar
  40. 40.
    H. Saghi, J. Mar. Sci. Technol. (2018)  https://doi.org/10.1007/s00773-018-0564-0
  41. 41.
    M.J. Ketabdari, H. Saghi, ISRN Mech. Eng. 2011, 809498 (2011)CrossRefGoogle Scholar
  42. 42.
    M.J. Ketabdari, H. Saghi, J. Braz. Soc. Mech. Sci. Eng. 35, 479 (2013)CrossRefGoogle Scholar
  43. 43.
    M. Rudman, Int. J. Numer. Methods Fluids 24, 671 (1997)ADSCrossRefGoogle Scholar
  44. 44.
    H. Saghi, M.J. Ketabdari, Arab. J. Sci. Eng. 39, 669 (2014)MathSciNetCrossRefGoogle Scholar
  45. 45.
    H. Saghi, E. Lakzian, Energy 128, 564 (2017)CrossRefGoogle Scholar
  46. 46.
    T. Ghisu, F. Cambuli, P. Puddu, N. Mandas, P. Seshadri, G.T. Parks, Meccanica 53, 3437 (2018)MathSciNetCrossRefGoogle Scholar
  47. 47.
    A.S. Shehata, Q. Xiao, M.A. Kotb, M.M. Selim, A.H. Elbatran, D. Alexander, Ocean Eng. 157, 262 (2018)CrossRefGoogle Scholar
  48. 48.
    T. Gratton, T. Ghisu, G. Parks, F. Cambuli, P. Puddu, Ocean Eng. 169, 202 (2018)CrossRefGoogle Scholar
  49. 49.
    A.R. Mamouri, A. Khoshnevis, E. Lakzian, Ocean Eng. 173, 700 (2019)CrossRefGoogle Scholar
  50. 50.
    E. Lakzian, M. Hajian, A. Farahmand, Meccanica 53, 145 (2018)CrossRefGoogle Scholar
  51. 51.
    M. Nazeryan, E. Lakzian, Energy 143, 385 (2018)CrossRefGoogle Scholar
  52. 52.
    A.S. Shehata, K.M. Saqr, Q. Xiao, M.F. Shehadeh, A. Day, Renew. Energy 86, 1123 (2016)CrossRefGoogle Scholar
  53. 53.
    E. Lakzian, A. Estiri, Eur. Phys. J. Plus 133, 454 (2018)CrossRefGoogle Scholar
  54. 54.
    H. Saghi, Physica A 491, 972 (2018)ADSMathSciNetCrossRefGoogle Scholar
  55. 55.
    J.C. Martin, W.J. Moyce, Philos. Trans. R. Soc. London 244, 312 (1982)CrossRefGoogle Scholar
  56. 56.
    S. Koshizuka, H. Tamako, Y. Oka, Comput. Fluid Dyn. J. 4, 29 (1995)Google Scholar
  57. 57.
    Bureau of reclamation, Design of Small Dams: A Water Resources Technical Publication (United State Department of the Interior, 1987)Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Civil engineeringHakim Sabzexvari UniversitySabzevarIran
  2. 2.Department of Mechanical engineeringHakim Sabzevari UniversitySabzevarIran

Personalised recommendations