Advertisement

Study on subsurface damage of wafer silicon containing through silicon via in thinning

  • Yixin Xu
  • Miaocao Wang
  • Fulong ZhuEmail author
  • Xiaojian Liu
  • Yuhong Liu
  • Liping He
Regular Article

Abstract.

Molecular Dynamics (MD) simulations are carried out to study the thinning mechanism of silicon wafer containing through silicon via (TSV) at different loading conditions. The nano-metric grinding process is explained by lattice slip and distortion induced by tool extrusion. When the grinding depth is relatively low, amorphous silicon will appear on the surface of the silicon. The nano-twin defects appear on the subsurface of the workpiece as the grinding depth reaches 1.5nm. We compared the depth of the defect at the Si-SiO2 interface and inside the silicon. The results show that the nano-twins extend to the interface leading to a deeper damage. Between 40 and 100m/s, increasing the grinding speed can slightly reduce the depth of interface damage, while the defects inside the silicon are mainly affected by the grinding depth. Moreover, both normal and tangential force decrease with the increase of speed from 40 to 100m/s. The friction coefficient calculation results show that the larger the grinding depth, the larger the friction coefficient. Higher speeds reduce the friction coefficient of the diamond abrasive particles and the workpiece surface over the speed range from 40 to 100m/s. At last, the surface contact stress is calculated based on the actual contact surface. With the depth of 1.0nm, the contact stress is the largest, i.e. 11.99GPa.

References

  1. 1.
    Gordon E. Moore, IEEE Solid-State Circ. Soc. Newslett. 11, 33 (2006)CrossRefGoogle Scholar
  2. 2.
    H.L. John, Microelectron. Int. 28, 8 (2011)Google Scholar
  3. 3.
    R. Gassilloud, C. Ballif, P. Gasser, G. Buerki, J. Michler, Phys. Status Solidi (a) 202, 2858 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    R. Chen, J. Luo, D. Guo, X. Lu, J. Appl. Phys. 104, 104907 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    X. Han, Y. Hu, S. Yu, Appl. Phys. A 95, 899 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    Z. Yang, Z. Lu, Y. Zhao, J. Appl. Phys. 106, 023537 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    M.I. Baskes, M. Nastasi, J.G. Swadener, Phys. Rev. Lett. 89, 085503 (2002)ADSCrossRefGoogle Scholar
  8. 8.
    W.C. Nixon, J. R. Microsc. Soc. 83, 213 (1964)CrossRefGoogle Scholar
  9. 9.
    D.B. Williams, C.B. Carter, The Transmission Electron Microscope, Transmission Electron Microscopy: A Textbook for Materials Science (Springer US, Boston, MA, 1996) pp. 3--17Google Scholar
  10. 10.
    W.C. Swope, H.C. Andersen, P.H. Berens, K.R. Wilson, J. Chem. Phys. 76, 637 (1982)ADSCrossRefGoogle Scholar
  11. 11.
    W.G. Hoover, B.H. Failor, B. Moran, A.J.C. Ladd, D.J. Evans, Phys. Rev. A 28, 1016 (1983)ADSCrossRefGoogle Scholar
  12. 12.
    D. Mulliah, S.D. Kenny, Roger Smith, C.F. Sanz-Navarro, Nanotechnology 15, 243 (2004)ADSCrossRefGoogle Scholar
  13. 13.
    R. Komanduri, N. Ch And Rasekaran, L.M. Raff, Philos. Mag. B 81, 1989 (2001)ADSCrossRefGoogle Scholar
  14. 14.
    I. Zarudi, L.C. Zhang, W.C.D. Cheong, T.X. Yu, Acta Mater. 53, 4795 (2005)CrossRefGoogle Scholar
  15. 15.
    T. Yokosuka, H. Kurokawa, S. Takami, M. Kubo, A. Miyamoto, A. Imamura, Jpn. J. Appl. Phys. 41, 2410 (2002)ADSCrossRefGoogle Scholar
  16. 16.
    R. Chen, R. Jiang, H. Lei, M. Liang, Appl. Surf. Sci. 264, 148 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    S. Plimpton, J. Comput. Phys. 117, 1 (1995)ADSCrossRefGoogle Scholar
  18. 18.
    I. Zarudi, W.C.D. Cheong, J. Zou, L.C. Zhang, Nanotechnology 15, 104 (2004)ADSCrossRefGoogle Scholar
  19. 19.
    J. Tersoff, Phys. Rev. B 39, 5566 (1989)ADSCrossRefGoogle Scholar
  20. 20.
    N.M. Putintsev, D.N. Putintsev, Dokl. Phys. Chem. 399, 278 (2004)CrossRefGoogle Scholar
  21. 21.
    Y.S. Kim, K.H. Na, S.O. Choi, S.H. Yang, J. Mater. Process Tech. 155-156, 1847 (2004)CrossRefGoogle Scholar
  22. 22.
    S. Alexander, Model Simul. Mater. Sci. 18, 015012 (2010)CrossRefGoogle Scholar
  23. 23.
    E. Maras, O. Trushin, A. Stukowski, T. Ala-Nissila, H. Jónsson, Comput. Phys. Commun. 205, 13 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    J.D. Honeycutt, H.C. Andersen, J. Phys. Chem. 91, 4950 (1987)CrossRefGoogle Scholar
  25. 25.
    B. Wang, Z. Zhang, K. Chang, J. Cui, A. Rosenkranz, J. Yu, C. Lin, G. Chen, K. Zang, J. Luo, N. Jiang, D. Guo, Nano Lett. 18, 4611 (2018)ADSCrossRefGoogle Scholar
  26. 26.
    R.W.G. Wyckoff, Crystal Structures, Vol. 1, second edition (Interscience Publishers, New York, 1963) pp. 7--83Google Scholar
  27. 27.
    T. Fang, C. Weng, J. Chang, Mater. Sci. Eng.: A 357, 7 (2003)CrossRefGoogle Scholar
  28. 28.
    W.C.D. Cheong, L.C. Zhang, Nanotechnology 11, 173 (2000)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Microsystems, School of Mechanical Science and EngineeringHuazhong University of Science and TechnologyWuhan, Hubei ProvinceChina
  2. 2.State Key Laboratory of TribologyTsinghua UniversityBeijingChina

Personalised recommendations