Advertisement

Analysis of the dynamics of hepatitis E virus using the Atangana-Baleanu fractional derivative

  • D. G. Prakasha
  • P. Veeresha
  • Haci Mehmet BaskonusEmail author
Regular Article

Abstract.

The pivotal aim of the present work is to analyse the dynamics of fractional mathematical model of the hepatitis E virus using the fractional Atangana-Baleanu (AB) derivative. The existence and uniqueness of the solution obtained for the proposed model are presented with the help of the fixed-point hypothesis. The Adams-Bashforth technique is employed to analyse and find the solution for the future model, and the numerical simulations have been conducted in order to validate the efficiency of the Atangana-Baleanu derivative. The present investigation shows that the dynamics of the hepatitis E virus model noticeably depends on the time instant as well as the time history, which can be efficiently modelled by employing the theory of fractional calculus.

References

  1. 1.
    K. Krawczynski, Hepatology 17, 932 (1993)CrossRefGoogle Scholar
  2. 2.
    R. Vishwanathan, Indian J. Med. Res. 45, 1 (1957)Google Scholar
  3. 3.
    WHO Report (2009) available at http://www.who.int/countries/uga/en/
  4. 4.
    D.B. Rein, G.A. Stevens, J. Theaker, J.S. Wittenborn, S.T. Wiersma, Hepatology 55, 988 (2012)CrossRefGoogle Scholar
  5. 5.
  6. 6.
    E. Ahmed, H.A. El-Saka, Nonlinear Biomed. Phys. 4, 1 (2010)CrossRefGoogle Scholar
  7. 7.
    M.A. Khan, K.O. Okuson, E. Bonyah, S.T. Ogunlade, Eur. Phys. J. Plus 132, 363 (2017)CrossRefGoogle Scholar
  8. 8.
    P. Veeresha, D.G. Prakasha, H.M. Baskonus, Chaos 29, 013119 (2019)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    G.N. Mercera, M.R. Siddiqui, Application of a hepatitis E transmission model to assess intervention strategies in a displaced persons camp in Uganda, in 19th International Congress on Modelling and Simulation, Australia (2011) http://mssanz.org.au/modsim2011
  10. 10.
    B. Nannyonga, D.J.T. Sumpter, J.Y.T. Mugisha, L.S. Luboobi, PLoS ONE 7, e41135 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    H. Ren, J. Li, Z.-A. Yuan, J.-Y. Hu, Y. Yu, Y.-H. Lu, BMC Infecti. Dis. 13, 421 (2013)CrossRefGoogle Scholar
  12. 12.
    M. Andraud, M. Dumarest, R. Cariolet, E. Barnaud, F. Eono, N. Rose, Épidémiol. Santé Anim. 63, 39 (2013)Google Scholar
  13. 13.
    S. Ullah, M.A. Khan, M. Farooq, Eur. Phys. J. Plus 133, 313 (2018)CrossRefGoogle Scholar
  14. 14.
    E.O. Alzahrani, M.A. Khan, Chaos Solitons Fractals 116, 287 (2018)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    S. Kumar, S. Subhadra, B. Singh, B.K. Panda, Int. J. Infect. Dis. 17, 228 (2013)CrossRefGoogle Scholar
  16. 16.
    S. Sridhar, S.K.P. Lau, P.C.Y. Woo, J. Formos. Med. Ass. 114, 681 (2015)CrossRefGoogle Scholar
  17. 17.
    M. Caputo, Geophys. J. R. Austr. Soc. 13, 529 (1967)ADSCrossRefGoogle Scholar
  18. 18.
    I. Podlubny, Fractional Differential Equations (Academic Press, New York, 1999)Google Scholar
  19. 19.
    D. Baleanu, Z.B. Guvenc, J.A.T. Machado, New Trends in Nanotechnology and Fractional Calculus Applications (Springer, Dordrecht, Heidelberg, London, New York, 2010)Google Scholar
  20. 20.
    A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations (Elsevier, Amsterdam, The Netherlands, 2006)Google Scholar
  21. 21.
    A. Prakash, P. Veeresha, D.G. Prakasha, M. Goyal, Eur. Phys. J. Plus 134, 19 (2019)CrossRefGoogle Scholar
  22. 22.
    H. Bulut, T.A. Sulaiman, H.M. Baskonus, H. Rezazadeh, M. Eslami, M. Mirzazadeh, Optik 172, 20 (2018)ADSCrossRefGoogle Scholar
  23. 23.
    P. Veeresha, D.G. Prakasha, H.M. Baskonus, Math. Sci. 13, 33 (2019)MathSciNetCrossRefGoogle Scholar
  24. 24.
    M. Caputo, M. Fabrizio, Progr. Fract. Differ. Appl. 1, 73 (2015)Google Scholar
  25. 25.
    J. Losada, J.J. Nieto, Progr. Fract. Differ. Appl. 1, 87 (2015)Google Scholar
  26. 26.
    J. Singh, D. Kumar, Z. Hammouch, A. Atangana, Appl. Math. Comput. 316, 504 (2018)MathSciNetGoogle Scholar
  27. 27.
    A. Atangana, B.T. Alkahtani, Entropy 17, 4439 (2015)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    A. Atangana, B.T. Alkahtani, Chaos, Solitons Fractals 89, 566 (2016)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    J. Singh, D. Kumar, A. Kilichman, Abstr. Appl. Anal. 2014, 535793 (2014)Google Scholar
  30. 30.
    A. Choudhary, D. Kumar, J. Singh, Nonlinear Eng. 3, 133 (2014)CrossRefGoogle Scholar
  31. 31.
    Z. Hammouch, T. Mekkaoui, Nonauton. Dyn. Syst. 1, 61 (2014)MathSciNetGoogle Scholar
  32. 32.
    S. Sarwar, M.M. Rashidi, Waves Random Complex Media 26, 365 (2016)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    A. Atangana, D. Baleanu, Therm. Sci. 20, 763 (2016)CrossRefGoogle Scholar
  34. 34.
    P.V.D. Driessche, J. Watmough, Math. Biosci. 180, 29 (2002)MathSciNetCrossRefGoogle Scholar
  35. 35.
    A. Atangana, K.M. Owolabi, Math. Model. Nat. Phenom. 13, 1 (2018)MathSciNetCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • D. G. Prakasha
    • 1
    • 2
  • P. Veeresha
    • 1
  • Haci Mehmet Baskonus
    • 3
    Email author
  1. 1.Department of Mathematics, Faculty of Science & TechnologysKarnatak UniversityDharwadIndia
  2. 2.Department of MathematicsDavangere UniversityShivagangotriIndia
  3. 3.Department of Computer Engineering, Faculty of EducationHarran UniversitySanliurfaTurkey

Personalised recommendations