Advertisement

Diffusive dark matter and dark energy scenario and k -essence in the context of Supernova Ia observations

  • Abhijit Bandyopadhyay
  • Anirban ChatterjeeEmail author
Regular Article
  • 14 Downloads

Abstract.

We consider a unified model of interacting dark matter and dark energy to account for coincidence of present day dark energy and dark matter densities. We assume dark energy to be represented by a homogeneous scalar field \(\phi\) whose dynamics is driven by a (non-canonical) k -essence Lagrangian with constant potential and the particles of dark matter fluid undergoing velocity diffusion in background medium of the k-essence scalar field \(\phi\). This results in a transfer of energy from the fluid of dark matter to that of dark energy. This effect shows up as a source term in the continuity equation for dark matter and dark energy fluids. The source term involves a diffusion coefficient which is a measure of average energy transferred per unit time due to diffusion. We use time evolutions of the scale factor of background FRW spacetime, energy density and pressure of the dark fluid obtained from analysis of Supernova Ia data to obtain bounds on the diffusion parameter. For a constant potential in the k-essence Lagrangian, the temporal behaviour of a homogeneous k-essence field \(\phi\) is obtained for different values of the diffusion parameter. The obtained temporal behaviour may be expressed as \(\phi(t/t_{0}) = \phi_{0} + \varepsilon_{1} (t/t_{0} - 1) + \varepsilon_{2} (t/t_{0} -1)^{2}\), where t0 is the time corresponding to the present epoch. The coefficients \(\varepsilon_{1}\) and \(\varepsilon_{2}\) have been found and obtained as linear functions of diffusion parameter.

References

  1. 1.
    A.G. Riess et al., Astron. J. 116, 1009 (1998)ADSCrossRefGoogle Scholar
  2. 2.
    S. Perlmutter et al., Astrophys. J. 517, 565 (1999)ADSCrossRefGoogle Scholar
  3. 3.
    Y. Sofue, V. Rubin, Annu. Rev. Astron. Astrophys. 39, 137 (2001)ADSCrossRefGoogle Scholar
  4. 4.
    M. Bartelmann, P. Schneider, Phys. Rep. 340, 291 (2001)ADSCrossRefGoogle Scholar
  5. 5.
    D. Clowe, A. Gonzalez, M. Markevitch, Astrophys. J. 604, 596 (2004)ADSCrossRefGoogle Scholar
  6. 6.
    WMAP Collaboration (G. Hinshaw et al.), Astrophys. J. Suppl. 208, 19 (2013)CrossRefGoogle Scholar
  7. 7.
    Planck Collaboration (P.A.R. Ade et al.), Astron. Astrophys. 571, A16 (2014)CrossRefGoogle Scholar
  8. 8.
    S. Weinberg, Rev. Mod. Phys. 61, 1 (1989)ADSCrossRefGoogle Scholar
  9. 9.
    M. Szydowski, A. Stachowski, Phys. Rev. D 94, 043521 (2016)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    S. Calogero, JCAP 11, 016 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    S. Calogero, J. Geom. Phys. 62, 22082213 (2012)CrossRefGoogle Scholar
  12. 12.
    Z. Haba, A. Stachowski, M. Szydowski, JCAP 07, 024 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    A. Bandyopadhyay, D. Gangopadhyay, A. Moulik, Eur. Phys. J. C 72, 1943 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    P. Astier et al., Astron. Astrophys. 447, 31 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    M. Sullivan et al., Astrophys. J. 737, 102 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    W.M. Wood-Vasey et al., Astrophys. J. 666, 694 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    J.L. Tonry et al., Astrophys. J. 750, 99 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    D. Scolnic et al., Astrophys. J. 795, 45 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    D. Scolnic, arXiv:1310.3824Google Scholar
  20. 20.
    J.A. Frieman et al., Astron. J. 135, 338 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    R. Kessler et al., Astrophys. J. Suppl. 185, 32 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    J. Sollerman et al., Astrophys. J. 703, 1374 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    H. Lampeitl et al., Mon. Not. R. Acad. Sci. 401, 2331 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    H. Campbell et al., Astrophys. J. 763, 88 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    M. Hicken et al., Astrophys. J. 700, 331 (2009)ADSCrossRefGoogle Scholar
  26. 26.
    C. Contreras et al., Astron. J. 139, 519 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    G. Folatelli et al., Astron. J. 139, 120 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    M. Stritzinger et al., Astron. J. 142, 156 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    M. Ganeshalingam et al., Mon. Not. R. Acad. Sci. 433, 2240 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    G. Aldering et al., Proc. SPIE 4836, 61 (2002)ADSCrossRefGoogle Scholar
  31. 31.
    A. Conley et al., Astrophys. J. Suppl. 192, 1 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    N. Suzuki et al., Astrophys. J. 746, 85 (2012)ADSCrossRefGoogle Scholar
  33. 33.
    A.G. Riess et al., Astrophys. J. 659, 98 (2007)ADSCrossRefGoogle Scholar
  34. 34.
    Y. Wang, Astrophys. J. 536, 531 (2000)ADSCrossRefGoogle Scholar
  35. 35.
    S. Wang, S. Wen, M. Li, JCAP 03, 037 (2017)ADSCrossRefGoogle Scholar
  36. 36.
    S. Wang, Y. Wang, Phys. Rev. D 88, 043511 (2013)ADSCrossRefGoogle Scholar
  37. 37.
    M. Betoule, R. Kessler, J. Guy et al., Astron. Astrophys. 568, A22 (2014)CrossRefGoogle Scholar
  38. 38.
    R.J. Scherrer, Phys. Rev. Lett. 93, 011301 (2004)ADSCrossRefGoogle Scholar
  39. 39.
    L.P. Chimento, Phys. Rev. D 69, 123517 (2004)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsRamakrishna Mission Vivekananda University, Belur MathHowrahIndia

Personalised recommendations