Advertisement

Nonlinear dynamic response of sandwich beams with functionally graded negative Poisson’s ratio honeycomb core

  • Chong Li
  • Hui-Shen Shen
  • Hai WangEmail author
Regular Article
  • 75 Downloads

Abstract.

This paper investigates the nonlinear dynamic response of sandwich beams with functionally graded (FG) negative Poisson’s ratio (NPR) honeycomb core in thermal environments. The novel constructions of sandwich beams with four FG configurations of re-entrant honeycomb cores through the beam thickness direction are proposed for the first time. The temperature-dependent material properties of both face sheets and core of the sandwich beam are considered. 3D full scale finite element analyses are conducted to investigate the nonlinear dynamic response, and the variation of effective Poisson’s ratio (EPR) of the sandwich beam in the large deflection region. The numerical simulations are carried out for the sandwich beam with FG-NPR honeycomb core, from which results for the same sandwich beam with uniform distributed NPR honeycomb core are obtained as a comparator. Present results indicate that, when subjected to transverse dynamic pressure, the induced dynamic bending moment of the sandwich beam with core of positive EPR is much bigger than that of the sandwich beam with NPR core, and the thickness of which will extraordinarily increase. The effects of loading types, functionally graded configurations, temperature changes, boundary conditions, and length-to-thickness ratios on the deflection-time curves and EPR-deflection curves of sandwich beams are discussed in detail.

References

  1. 1.
    V. Birman, G.A. Kardomateas, Compos. Part B 142, 221 (2018)CrossRefGoogle Scholar
  2. 2.
    C. Kassapoglou, Design and Analysis of Composite Structures: With Applications to Aerospace Structures (John Wiley & Sons Ltd., West Sussex, 2010)Google Scholar
  3. 3.
    B. Zhu, Y.H. Dong, Y.H. Li, Nonlinear Dyn. 94, 2575 (2018)CrossRefGoogle Scholar
  4. 4.
    C. Yuan, Q. Qin, T.J. Wang, Acta Mech. 226, 3639 (2015)MathSciNetCrossRefGoogle Scholar
  5. 5.
    V.N. Burlayenko, T. Sadowski, Meccanica 49, 2617 (2014)MathSciNetCrossRefGoogle Scholar
  6. 6.
    S. Khalili, M.B. Dehkordi, E. Carrera, M. Shariyat, Compos. Struct. 96, 243 (2014)CrossRefGoogle Scholar
  7. 7.
    W. Songsuwan, M. Pimsarn, N. Wattanasakulpong, Int. J. Struct. Stab. Dyn. 18, 1850112 (2018)MathSciNetCrossRefGoogle Scholar
  8. 8.
    M. Simşek, M. Al-shujairi, Compos. Part B 108, 18 (2017)CrossRefGoogle Scholar
  9. 9.
    S.J. Salami, Aerospace Sci. Technol. 56, 56 (2016)MathSciNetCrossRefGoogle Scholar
  10. 10.
    M. Arefia, M. Pourjamshidian, A. Ghorbanpour Arani, Eur. Phys. J. Plus 133, 193 (2018)CrossRefGoogle Scholar
  11. 11.
    K.E. Evans, M.A. Nkansah, I.J. Hutchinson, S.C. Rogers, Nature 353, 124 (1991)ADSCrossRefGoogle Scholar
  12. 12.
    R.S. Lakes, Science 235, 1038 (1987)ADSCrossRefGoogle Scholar
  13. 13.
    R.S. Lakes, K. Elms, J. Compos. Mater. 27, 1193 (1993)ADSCrossRefGoogle Scholar
  14. 14.
    W. Yang, Z.M. Li, W. Shi, B.H. Xie, M.B. Yang, J. Mater. Sci. 39, 3269 (2004)ADSCrossRefGoogle Scholar
  15. 15.
    J.N. Grima, K.E. Evans, J. Mater. Sci. Lett. 19, 1563 (2000)CrossRefGoogle Scholar
  16. 16.
    J.B. Choi, R.S. Lakes, Int. J. Fract. 80, 73 (1996)CrossRefGoogle Scholar
  17. 17.
    K.E. Evans, Endeavour 15, 170 (1991)CrossRefGoogle Scholar
  18. 18.
    A. Alderson, K.L. Alderson, Proc. Inst. Mech. Eng. Part G: J. Aerospace Eng. 221, 565 (2007)CrossRefGoogle Scholar
  19. 19.
    D.H. Zhang, D. Jiang, Q.G. Fei, S.Q. Wu, Finite Elem. Anal. Des. 117-118, 21 (2016)CrossRefGoogle Scholar
  20. 20.
    S. Mohsenizadeh, R. Alipour, M. Shokri Rad, A. Farokhi Nejad, Z. Ahmad, Mater. Des. 88, 258 (2015)CrossRefGoogle Scholar
  21. 21.
    S.J. Hou, T.Q. Liu, Z.D. Zhang, X. Han, Q. Li, Mater. Des. 82, 247 (2015)CrossRefGoogle Scholar
  22. 22.
    J.B. Choi, R.S. Lakes, Int. J. Mech. Sci. 37, 51 (1995)CrossRefGoogle Scholar
  23. 23.
    D.U. Yang, S. Lee, F.Y. Huang, Finite Elem. Anal. Des. 39, 187 (2003)CrossRefGoogle Scholar
  24. 24.
    H. Wan, H. Ohtaki, S. Kotosaka, G.M. Hu, Eur. J. Mech. 23, 95 (2004)CrossRefGoogle Scholar
  25. 25.
    D. Li, L. Dong, J. Yin, R.S. Lakes, J. Mater. Sci. 51, 7029 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    X.C. Zhang, L.Q. An, H.M. Ding, X.Y. Zhu, M. EI-Rich, J. Sandw. Struct. Mater. 17, 26 (2015)CrossRefGoogle Scholar
  27. 27.
    F. Scarpa, G. Tomlinson, J. Sound Vib. 230, 45 (2000)ADSCrossRefGoogle Scholar
  28. 28.
    T. Strek, H. Jopek, M. Nienartowicz, Phys. Status Solidi 252, 1540 (2015)CrossRefGoogle Scholar
  29. 29.
    N.D. Duc, P.H. Cong, J. Sandw. Struct. Mater. 20, 692 (2018)CrossRefGoogle Scholar
  30. 30.
    N.D. Duc, S.E. Kim, P.H. Cong, N.T. Anh, N.D. Khoa, Int. J. Mech. Sci. 133, 504 (2017)CrossRefGoogle Scholar
  31. 31.
    H.S. Shen, Functionally Graded Materials Nonlinear Analysis of Plates and Shells (CRC Press, Raton, 2009)Google Scholar
  32. 32.
    H.S. Shen, Adv. Mech. 46, 478 (2016)Google Scholar
  33. 33.
    S. Venkataraman, B.V. Sankar, AIAA J. 41, 2501 (2003)ADSCrossRefGoogle Scholar
  34. 34.
    A. Fereidoon, M. Andalib, H. Hemmatian, Mech. Adv. Mater. Struct. 22, 564 (2015)CrossRefGoogle Scholar
  35. 35.
    Y. Hou, Y.H. Tai, C. Lira, F. Scarpa, J.R. Yates, B. Gu, Compos. Part A 49, 119 (2013)CrossRefGoogle Scholar
  36. 36.
    T.C. Lim, J. Mater. Sci. Lett. 21, 1899 (2002)CrossRefGoogle Scholar
  37. 37.
    L. Boldrin, S. Hummel, Compos. Struct. 149, 114 (2016)CrossRefGoogle Scholar
  38. 38.
    X.C. Jin, Z.H. Wang, J.G. Ning, G.S. Xiao, E.Q. Liu, X.F. Shu, Compos. Part B 106, 206 (2016)CrossRefGoogle Scholar
  39. 39.
    O.C. Zienkiewics, The Finite Element Method (Butterworth-Heinemann, Boston, 2000)Google Scholar
  40. 40.
    X.Y. Li, K.P. Yu, R. Zhao, Arch. Appl. Mech. 88, 543 (2018)ADSCrossRefGoogle Scholar
  41. 41.
    Y.G. Qu, X.H. Long, H.G. Li, G. Meng, Compos. Struct. 102, 175 (2013)ADSCrossRefGoogle Scholar
  42. 42.
    K.Y. Lam, L. Chun, Compos. Struct. 27, 331 (1994)CrossRefGoogle Scholar
  43. 43.
    Z.C. Yang, Q.T. Deng, Adv. Mech. 41, 335 (2011)Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Aeronautics & AstronauticsShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations