Advertisement

Theoretical analysis of an impact-bistable piezoelectric energy harvester

  • Zhengqiu Xie
  • C. A. Kitio Kwuimy
  • Tao Wang
  • Xiaoxi Ding
  • Wenbin HuangEmail author
Regular Article
  • 111 Downloads

Abstract.

In recent years, piezoelectric energy harvesting has attracted growing attention due to its great potential in the application of Internet of Things. However, traditional linear harvesters have limited operation bandwidth, resulting into the sharp decline of the output power when the excitation frequency shifts from the resonance thus a low efficiency for stochastic excitations in the ambient environment. In order to overcome these issues, this paper analyzes the performance of an impact-bistable piezoelectric energy harvester. Influence of critical parameters including the clearance between two collision parts of the harvester, and external excitation frequencies and amplitudes upon the harvester performance are theoretically studied using the dimensionless model. Phase portraits, time histories, bifurcation diagrams and 0-1 test are employed to analyze the characteristics of the harvesting system. The results show that by choosing appropriate physical parameters, the proposed energy harvester could exhibit high-energy interwell motion with an 80% frequency bandwidth under both the harmonic excitation and broadband random excitation.

References

  1. 1.
    S.P. Beeby, M.J. Tudor, N.M. White, Meas. Sci. Technol. 17, R175 (2006)CrossRefGoogle Scholar
  2. 2.
    S.R. Anton, H.A. Sodano, Smart Mater. Struct. 16, R1 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    A. Harb, Renew. Energy 36, 2641 (2011)CrossRefGoogle Scholar
  4. 4.
    S.P. Pellegrini, N. Tolou, M. Schenk, J.L. Herder, J. Intell. Mater. Syst. Struct. 24, 1303 (2012)CrossRefGoogle Scholar
  5. 5.
    S.A. Emam, D.J. Inman, Appl. Mech. Rev. 67, 060803 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    K. Ylli, D. Hoffmann, A. Willmann, P. Becker, B. Folkmer, Y. Manoli, Smart Mater. Struct. 24, 025029 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    H. Kulah, K. Najafi, IEEE Sensors J. 8, 261 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    Y. Naruse, N. Matsubara, K. Mabuchi, M. Izumi, S. Suzuki, J. Micromech. Microeng. 19, 094002 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    A.F. Arrieta, P. Hagedorn, A. Erturk, D.J. Inman, Appl. Phys. Lett. 97, 104102 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    Y.G. Leng, Y.J. Gao, D. Tan, S.B. Fan, Z.H. Lai, J. Appl. Phys. 117, 064901 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    P. Harris, W. Skinner, C.R. Bowen, H.A. Kim, Ferroelectrics 480, 67 (2015)CrossRefGoogle Scholar
  12. 12.
    B. Andò, S. Baglio, A.R. Bulsara, V. Marletta, Sensor Actuat. A 211, 153 (2014)CrossRefGoogle Scholar
  13. 13.
    S. Wei, H. Hu, S. He, Smart Mater. Struct. 22, 105020 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    F. Cottone, L. Gammaitoni, H. Vocca, M. Ferrari, V. Ferrari, Smart Mater. Struct. 21, 035021 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    M. Renaud, P. Fiorini, R. van Schaijk, C. van Hoof, Smart Mater. Struct. 18, 035001 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    G.T. Oumbe Tekam, C.A. Kwuimy, P. Woafo, Chaos 25, 013112 (2015)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    C.A. Kitio Kwuimy, G. Litak, M. Borowiec, C. Nataraj, Appl. Phys. Lett. 100, 024103 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    K. Fan, Q. Tan, Y. Zhang, S. Liu, M. Cai, Y. Zhu, Appl. Phys. Lett. 112, 123901 (2018)ADSCrossRefGoogle Scholar
  19. 19.
    S. Zhao, A. Erturk, Appl. Phys. Lett. 102, 103902 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    R.L. Harne, K.W. Wang, Smart Mater. Struct. 22, 023001 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    S. Zhou, J. Cao, D.J. Inman, J. Lin, S. Liu, Z. Wang, Appl. Energ. 133, 33 (2014)CrossRefGoogle Scholar
  22. 22.
    M. Al Ahmad, J. Electron. Mater. 43, 452 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    S.-M. Jung, K.-S. Yun, Appl. Phys. Lett. 96, 111906 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    N.S. Shenck, J.A. Paradiso, IEEE Micro 21, 30 (2001)CrossRefGoogle Scholar
  25. 25.
    E. Blokhina, D. Galayko, P. Basset, O. Feely, IEEE Trans. Circ.-I 60, 875 (2013)Google Scholar
  26. 26.
    G.T. Oumbé Tékam, V. Ginis, J. Danckaert, P. Tassin, Appl. Phys. Lett. 110, 083901 (2017)ADSCrossRefGoogle Scholar
  27. 27.
    A. Rami Reddy, M. Umapathy, D. Ezhilarasi, U. Gandhi, J. Vib. Control 22, 3057 (2014)CrossRefGoogle Scholar
  28. 28.
    A.R. Biswal, T. Roy, R.K. Behera, J. Intell. Mater. Syst. Struct. 28, 1957 (2017)CrossRefGoogle Scholar
  29. 29.
    I.S. Mokem Fokou, C.N.D. Buckjohn, M. Siewe Siewe, C. Tchawoua, Eur. Phys. J. Plus 132, 344 (2017)CrossRefGoogle Scholar
  30. 30.
    T.T. Toh, P.D. Mitcheson, A.S. Holmes, E.M. Yeatman, J. Micromech. Microeng. 18, 104008 (2008)ADSCrossRefGoogle Scholar
  31. 31.
    H. Liu, Z. Ji, T. Chen, L. Sun, S.C. Menon, C. Lee, IEEE Sensors J. 15, 4782 (2015)ADSCrossRefGoogle Scholar
  32. 32.
    R. Dauksevicius, D. Briand, A.V. Quintero, R.A. Lockhart, P. Janphuang, N.F. de Rooij, V. Ostasevicius, J. Phys.: Conf. Ser. 476, 012090 (2013)Google Scholar
  33. 33.
    L. Gu, C. Livermore, Smart Mater. Struct. 21, 015002 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    K. Vijayan, M.I. Friswell, H. Haddad Khodaparast, S. Adhikari, Int. J. Mech. Sci. 96, 101 (2015)CrossRefGoogle Scholar
  35. 35.
    Z. Xie, C.A.K. Kwuimy, W. Huang, Symposium on Piezoelectricity, Acoustic waves, and Device Applications (IEEE, 2016)Google Scholar
  36. 36.
    J.A. Simeonov, Mech. Res. Commun. 73, 140 (2016)CrossRefGoogle Scholar
  37. 37.
    M.D. Bryant, J. Sound Vib. 99, 403 (1985)ADSCrossRefGoogle Scholar
  38. 38.
    W.J. Stronge, Imapact Mechanics (Cambridge University Press, Cambridge, 2004)Google Scholar
  39. 39.
    S.C. Stanton, C.C. McGehee, B.P. Mann, Physica D 239, 640 (2010)ADSCrossRefGoogle Scholar
  40. 40.
    C.A. Kitio Kwuimy, G. Litak, C. Nataraj, Nonlinear Dyn. 80, 491 (2015)CrossRefGoogle Scholar
  41. 41.
    G.A. Gottwald, I. Melbourne, Proc. R. Soc. London A 460, 603 (2004)ADSCrossRefGoogle Scholar
  42. 42.
    G.A. Gottwald, I. Melbourne, Physica D 212, 100 (2005)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.The State Key Lab of Mechanical TransmissionsChongqing UniversityChongqingChina
  2. 2.Department of Engineering Education, College of Engineering and Applied ScienceUniversity of CincinnatiCincinnatiUSA
  3. 3.China north vehicle research instituteBeijingChina

Personalised recommendations