Advertisement

Bimetallic nanostructures on porous silicon with controllable surface plasmon resonance

  • Nadia Khinevich
  • Sergey Zavatski
  • Victor Kholyavo
  • Hanna BandarenkaEmail author
Regular Article
  • 41 Downloads
Part of the following topical collections:
  1. Focus Point on Nanotechnology, Nanomaterials and Interfaces

Abstract.

The most intensive surface plasmon resonance (SPR) band is typical for the metallic particles of 10-150nm diameters. The SPR band of such nanoparticles is usually narrow and allows using just one laser (i.e. limited range of excitation wavelength) to achieve the maximal enhancement of electromagnetic field near metallic nanostructures caused by surface plasmon oscillations. It hinders usability of plasmonic nanostructures in some application including surface enhanced Raman scattering (SERS) spectroscopy. To overcome this hurdle enlarged metallic nanostructures are fabricated resulting in a broadening of the SPR band due to additional oscillation modes. However, the SPR bands of the enlarged particles are characterized by less intensity and weak enhancement at different wavelengths. In this paper, we proposed an alternative way for the SPR band broadening by use of bimetallic nanostructures on a sculptured template. Plasmonic substrates were fabricated by sequential copper electroplating and silver electroless deposition on porous silicon. Presented data implies that variation in morphology and ratio of the silver/copper nanostructures allow to control position of their SPR band from blue to near-infrared (IR) range. It is shown that SERS-spectroscopy with the fabricated nanostructures provide equal detection limits of rhodamine 6G under red and near-IR excitation wavelengths.

References

  1. 1.
    J. Gusakova, X. Wang, L.L. Shiau, A. Krivosheeva, V. Shaposhnikov, V. Borisenko, V. Gusakov, B.K. Tay, Phys. Status Solidi A 214, 1700218 (2017)CrossRefGoogle Scholar
  2. 2.
    M. Salvato, C. Cirillo, R. Fittipaldi, S.L. Prischepa, A. Vecchione, F. De Nicola, P. Castrucci, M. De Crescenzi, M. Scarselli, C. Attanasio, Carbon 105, 544 (2016)CrossRefGoogle Scholar
  3. 3.
    R. Barretta, M. Čanadija, L. Feo, R. Luciano, F. Marotti de Sciarra, R. Penna, Composites Part B: Eng. 142, 273 (2018)CrossRefGoogle Scholar
  4. 4.
    R. Barretta, M. Brcic, M. Canacija, R. Luciano, F.M. de Sciarra, Eur. J. Mech. A Solids 65, 1 (2017)MathSciNetCrossRefGoogle Scholar
  5. 5.
    K.V. Girel, A.Y. Panarin, H.V. Bandarenka, G. Isic, V.P. Bondarenko, S.N. Terekhov, Nanotechnology 29, 395708 (2018)CrossRefGoogle Scholar
  6. 6.
    M. Fan, G.F.S. Andrade, A.G. Brolo, Anal. Chim. Acta 693, 7 (2011)CrossRefGoogle Scholar
  7. 7.
    S. Laing, L.E. Jamieson, K. Faulds, D. Graham, Nat. Rev. Chem. 1, 0060 (2017)CrossRefGoogle Scholar
  8. 8.
    M. Fleischmann, P.J. Hendra, A.J. McQuillan, Chem. Phys. Lett. 26, 163 (1974)CrossRefGoogle Scholar
  9. 9.
    B. Sharma, R.R. Frontiera, A.I. Henry, E. Ringe, R.P. Van Duyne, Mater. Today 15, 16 (2012)CrossRefGoogle Scholar
  10. 10.
    E. Koglin, J.M. Sequaris, J.C. Fritz, P. Valenta, J. Mol. Struct. 114, 219 (1984)CrossRefGoogle Scholar
  11. 11.
    H. Bandarenka, K. Artsemyeva, S. Redko, A. Panarin, S. Terekhov, V. Bondarenko, Phys. Status Solidi C 10, 624 (2013)CrossRefGoogle Scholar
  12. 12.
    K. Fukami, M.L. Chourou, R. Miyagawa, Á.M. Noval, T. Sakka, M. Manso-Silván, R.J. Martín-Palma, Y.H. Ogata, Materials 4, 791 (2011)CrossRefGoogle Scholar
  13. 13.
    G. Marinaro, G. Das, A. Giugni, M. Allione, B. Torre, P. Candeloro, J. Kosel, E. Di Fabrizio, Materials 11, 827 (2018)CrossRefGoogle Scholar
  14. 14.
    W.F. Jiang, W.W. Shan, H. Ling, Y.S. Wang, Y.X. Cao, X.J. Li, Condens. Matter 22, 415105 (2010)CrossRefGoogle Scholar
  15. 15.
    H. Bandarenka, S. Redko, A. Smirnov, A. Panarin, S. Terekhov, P. Nenzi, M. Balucani, V. Bondarenko, Nanoscale Res. Lett. 7, 477 (2012)CrossRefGoogle Scholar
  16. 16.
    M.K. Oh, H.J. Baik, S.K. Kim, S. Park, J. Mater. Chem. 21, 19069 (2011)CrossRefGoogle Scholar
  17. 17.
    G. Arzumanyan, N. Doroshkevich, K. Mamatkulov, S. Shashkov, K. Girel, H. Bandarenka, V. Borisenko, Phys. Status Solidi A 214, 1600915 (2017)CrossRefGoogle Scholar
  18. 18.
    L.J. Sherry, S.H. Chang, G.C. Schatz, R.P. Van Duyne, Nano Lett. 5, 2034 (2005)CrossRefGoogle Scholar
  19. 19.
    K. Girel, E. Yantcevich, G. Arzumanyan, N. Doroshkevich, H. Bandarenka, Phys. Status Solidi A 213, 2911 (2016)CrossRefGoogle Scholar
  20. 20.
    M. Yan, Y. Xiang, L. Liu, L. Chai, X. Lia, T. Feng, RSC Adv. 4, 98 (2014)CrossRefGoogle Scholar
  21. 21.
    K. Hasna, A. Antony, J. Puigdollers, K.R. Kumar, M.K. Jayaraj, Nano Res. 9, 3075 (2016)CrossRefGoogle Scholar
  22. 22.
    L. Canham, Properties of Porous Silicon (INSPEC, London, 1997)Google Scholar
  23. 23.
    S. Chan, S. Kwon, T.W. Koo, L.P. Lee, A.A. Berlin, Adv. Mater. 15, 1595 (2003)CrossRefGoogle Scholar
  24. 24.
    H. Bandarenka, K.V. Girel, S.A. Zavatski, A. Panarin, S.N. Terekhov, Materials 11, 852 (2018)CrossRefGoogle Scholar
  25. 25.
    IUPAC Manual of symbols and terminology for physicochemical quantities and units (Butterworths, London, 1972)Google Scholar
  26. 26.
    K.J. Khajehpour, T. Williams, L. Bourgeois, S. Adeloju, Chem. Commun. 48, 5349 (2012)CrossRefGoogle Scholar
  27. 27.
    D. Yakimchuk, E. Kaniukov, V. Bundyukova, L. Osminkina, S. Teichert, S. Demyanov, V. Sivakov, MRS Commun. 8, 95 (2018)CrossRefGoogle Scholar
  28. 28.
    M. Kosovic, M. Balarin, M. Ivanda, V. Derek, M. Marcius, M. Ristic, O. Gamulin, Appl. Spectrosc. 69, 1417 (2015)CrossRefGoogle Scholar
  29. 29.
    K. Artsemyeva, A. Dolgiy, H. Bandarenka, A. Panarin, I. Khodasevich, S. Terekhov, V. Bondarenko, ECS Trans. 53, 85 (2013)CrossRefGoogle Scholar
  30. 30.
    C. Novara, A. Lambetti, A. Chiado, A. Virga, P. Rivolo, F. Geobaldo, F. Giorgis, RSC Adv. 6, 21865 (2016)CrossRefGoogle Scholar
  31. 31.
    H. Bandarenka, S. Redko, P. Nenzi, M. Balucani, V. Bondarenko, J. Nanosci. Nanotech. 12, 8725 (2012)CrossRefGoogle Scholar
  32. 32.
    A.M. Alwan, I.A. Naseef, A.B. Dheyab, Plasmonics 13, 2037 (2018)CrossRefGoogle Scholar
  33. 33.
    H. Bandarenka, A. Shapel, M. Balucani, Solid State Phen. 151, 222 (2009)CrossRefGoogle Scholar
  34. 34.
    Y.H. Ogata, J. Sasano, J. Jorne, T. Tsuboi, F.A. Harraz, T. Sakka, Phys. Status Solidi A 182, 71 (2000)CrossRefGoogle Scholar
  35. 35.
    J.A. Dieringer, K.L. Wustholz, D.J. Masiello, J.P. Camden, S.L. Kleinman, G.C. Schatz, R.P. Van Duyne, J. Am. Chem. Soc. 131, 849 (2009)CrossRefGoogle Scholar
  36. 36.
    A. Pimentel, A. Araújo, B.J. Coelho, D. Nunes, M.J. Oliveira, M.J. Mendes, H. Águas, R. Martins, E. Fortunato, Materials 10, 1351 (2017)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Nadia Khinevich
    • 1
  • Sergey Zavatski
    • 1
  • Victor Kholyavo
    • 1
  • Hanna Bandarenka
    • 1
    Email author
  1. 1.Applied Plasmonics LaboratoryBelarusian State University of Informatics and RadioelectronicsMinskBelarus

Personalised recommendations