Advertisement

Fractional stochastic modelling illustration with modified Chua attractor

  • Abdon AtanganaEmail author
  • Seda İğret Araz
Regular Article
  • 20 Downloads
Part of the following topical collections:
  1. Focus Point on Fractional Differential Equations in Physics: Recent Advantages and Future Direction

Abstract.

Very recently a new concept to capture more complexities in nature was suggested. The concept combines two important concepts of modeling including fractional differentiation and stochastic approach. In this work, we aim to investigate new chaotic attractors using the modified Chuan models and the new approach. We use the log-normal distribution to convert constant parameters into distribution. Then we use 3 different types of differential operators including Caputo, Caputo-Fabrizio and Atangana-Baleanu derivatives. We solve the new equations by using the newly introduced numerical scheme. Our numerical simulations display very new attractors.

References

  1. 1.
    H. Kobel, Quart. J. Math. 11, 193 (1940)ADSGoogle Scholar
  2. 2.
    M. Caputo, Geophys. J. Int. 13, 529 (1967)ADSCrossRefGoogle Scholar
  3. 3.
    A. Atangana, E. Bonyah, Chaos 29, 013118 (2019)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    S.P. Nasholm, S. Holm, J. Acoust. Soc. Am. 130, 3038 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    Udita N. Katugampola, Appl. Math. Comput. 218, 860 (2011)MathSciNetGoogle Scholar
  6. 6.
    S. Holm, S.P. Näsholm, J. Acoust. Soc. Am. 130, 2195 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    F.N. David, Biometrika 42, 1 (1955)MathSciNetCrossRefGoogle Scholar
  8. 8.
    David Applebaum, Not. Am. Math. Soc. 51, 1341 (2004)Google Scholar
  9. 9.
    Petar Todorovic, An Introduction to Stochastic Processes and Their Applications (Springer Science & Business Media, 2012) pp. 19--20Google Scholar
  10. 10.
    David Bellhouse, Hist. Math. 32, 180 (2005)CrossRefGoogle Scholar
  11. 11.
    E.T. Goodwin, Math. Proc. Cambridge Philos. Soc. 45, 241 (1949)ADSCrossRefGoogle Scholar
  12. 12.
    Yuri Kalambet, Yuri Kozmin, Andrey Samokhin, Chemometr. Intell. Lab. Syst. 179, 22 (2018)CrossRefGoogle Scholar
  13. 13.
    Mathieu Ossendrijver, Science 351, 482 (2016)MathSciNetCrossRefGoogle Scholar
  14. 14.
    W.E. Milne, Am. Math. Mon. Math. Assoc. Am. 33, 455 (1926)CrossRefGoogle Scholar
  15. 15.
    Germund Dahlquist, BIT Numer. Math. 3, 27 (1963)CrossRefGoogle Scholar
  16. 16.
    Germund Dahlquist, Math. Scandin. 4, 33 (1956)CrossRefGoogle Scholar
  17. 17.
    W. Chen, Chaos, Solitons Fractals 28, 923 (2006)ADSCrossRefGoogle Scholar
  18. 18.
    T. Gul, M.A. Khan, A. Khan, M. Shuaib, Eur. Phys. J. Plus 133, 500 (2018)CrossRefGoogle Scholar
  19. 19.
    M.A. Khan, S. Ullah, K.O. Okosun, K. Shah, Adv. Differ. Equ. 2018, 410 (2018)CrossRefGoogle Scholar
  20. 20.
    M.A. Khan, S. Ullah, M. Farooq, Chaos, Solitons Fractals 116, 227 (2018)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute for Groundwater Studies, Faculty of Natural and Agricultural SciencesUniversity of the Free StateBloemfonteinSouth Africa
  2. 2.Siirt UniversityDepartment Mathematics, Faculty of EducationSiirtTurkey

Personalised recommendations