Advertisement

Physical aspects of irreversibility in radiative flow of viscous material with cubic autocatalysis chemical reaction

  • Tasawar Hayat
  • Sania Javed
  • M. Ijaz Khan
  • M. Imran KhanEmail author
  • Ahmed Alsaedi
Open Access
Regular Article

Abstract.

Analysis of irreversibility in flow by a stretchable surface has gained much consideration in recent years. Entropy optimization properly computes the second law thermodynamic irreversibilities. Therefore, deterioration of entropy proficiency results in a more useful energy transport process. In this article, a physical aspect of irreversibility in radiative flow of viscous material with quartic autocatalysis chemical reaction is addressed. The flow is discussed between two stretchable rotating disks. Heat transfer occurring in this physical problem is modelled through thermal radiation, Joule heating and viscous dissipation. This is the first time the concept of homogeneous-heterogeneous reactions has been studied with entropy generation. The nonlinear flow expressions are made dimensionless. The obtained equations are then tackled through the homotopy concept. The analysis discloses that the radiation parameter and Eckert number play a vital role in the enhancement of temperature field. The tangential velocity decreases versus the magnetic parameter. The radial component of velocity boosts close to lower disks and it decreases near the upper disks versus the Reynolds number. The variations in the Nusselt number and skin friction are presented graphically with various emerging variables. It is noticed that entropy rate can be controlled by minimizing the impact of Brinkman and Reynolds numbers.

References

  1. 1.
    T.V. Kármán, J. Appl. Math. Mech. 1, 233 (1921)Google Scholar
  2. 2.
    T. Hayat, S. Qayyum, M.I. Khan, A. Alsaedi, Phys. Fluids 30, 017101 (2018)ADSCrossRefGoogle Scholar
  3. 3.
    T. Hayat, M.I. Khan, A. Alsaedi, M.I. Khan, Int. Commun. Heat Mass Transfer 89, 190 (2017)CrossRefGoogle Scholar
  4. 4.
    M. Mustafa, Int. J. Heat Mass Transfer 108, 1910 (2017)CrossRefGoogle Scholar
  5. 5.
    W. Wu, B. Xiao, Ji. Hu, S. Yuan, Chenhui Hu, Appl. Therm. Eng. 133, 33 (2018)CrossRefGoogle Scholar
  6. 6.
    M. Hassan, C. Fetecau, A. Majeed, A. Zeeshan, J. Magn. & Magn. Mater. 465, 531 (2018)ADSCrossRefGoogle Scholar
  7. 7.
    A. Mehmood, A. Zameer, M.A.Z. Raja, Appl. Soft Comput. 67, 8 (2018)CrossRefGoogle Scholar
  8. 8.
    S. Qayyum, M.I. Khan, T. Hayat, A. Alsaedi, Physica B 534, 173 (2018)ADSCrossRefGoogle Scholar
  9. 9.
    S. Xun, J. Zhao, L. Zheng, X. Chen, X. Zhang, Int. J. Heat Mass Transfer 103, 1214 (2016)CrossRefGoogle Scholar
  10. 10.
    Y.Y. Lok, J.H. Merkin, I. Pop, Eur. J. Mech.-B/Fluids 72, 275 (2018)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    M.I. Khan, T. Hayat, A. Alsaedi, S. Qayyum, M. Tamoor, Int. J. Heat Mass Transfer 127, 829 (2018)CrossRefGoogle Scholar
  12. 12.
    S. Qayyum, M.I. Khan, T. Hayat, A. Alsaedi, M. Tamoor, Int. J. Heat Mass Transfer 127, 933 (2018)CrossRefGoogle Scholar
  13. 13.
    M.I. Khan, T. Hayat, M. Waqas, M.I. Khan, A. Alsaedi, J. Mol. Liq. 256, 108 (2018)CrossRefGoogle Scholar
  14. 14.
    S. Qayyum, T. Hayat, M.I. Khan, M.I. Khan, A. Alsaedi, J. Mol. Liq. 262, 261 (2018)CrossRefGoogle Scholar
  15. 15.
    T. Hayat, T. Nasir, M.I. Khan, A. Alsaedi, Results Phys. 9, 390 (2018)ADSCrossRefGoogle Scholar
  16. 16.
    M.I. Khan, T. Hayat, A. Alsaedi, Phys. Fluids 30, 023601 (2018)ADSCrossRefGoogle Scholar
  17. 17.
    Y. Liu, Y. Jian, W. Tan, Int. J. Heat Mass Transfer 127, 901 (2018)CrossRefGoogle Scholar
  18. 18.
    M.I. Khan, T. Hayat, S. Qayyum, M.I. Khan, A. Alsaedi, Phys. Lett. A 382, 2343 (2018)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    E. Manay, E.F. Akyürek, B. Sahin, Results Phys. 9, 615 (2018)ADSCrossRefGoogle Scholar
  20. 20.
    X. Tian, L. Wang, Int. J. Heat Mass Transfer 121, 1137 (2018)CrossRefGoogle Scholar
  21. 21.
    Z. Li, M. Sheikholeslami, M. Jafaryar, A. Shafee, A.J. Chamkha, J. Mol. Liq. 266, 797 (2018)CrossRefGoogle Scholar
  22. 22.
    G.H.R. Kefayati, H. Tang, Int. J. Heat Mass Transfer 120, 683 (2018)CrossRefGoogle Scholar
  23. 23.
    M.I. Khan, S. Qayyum, T. Hayat, M.I. Khan, A. Alsaedi, T.A. Khan, Phys. Lett. A 382, 2017 (2018)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    T. Hayat, S. Nawaz, A. Alsaedi, J. Mol. Liq. 248, 447 (2017)CrossRefGoogle Scholar
  25. 25.
    Z.Y. Xie, Y.J. Jian, Energy 139, 1080 (2017)CrossRefGoogle Scholar
  26. 26.
    T. Hayat, M.W.A. Khan, M.I. Khan, A. Alsaedi, J. Braz. Soc. Mech. Sci. Eng. 40, 373 (2018)CrossRefGoogle Scholar
  27. 27.
    M.I. Khan, S. Qayyum, T. Hayat, A. Alsaedi, Chin. J. Phys. 56, 1525 (2018)CrossRefGoogle Scholar
  28. 28.
    S. Ahmad, M.I. Khan, T. Hayat, M.I. Khan, A. Alsaedi, Colloids Surf. A 554, 197 (2018)CrossRefGoogle Scholar
  29. 29.
    T. Hayat, F. Shah, M.I. Khan, M.I. Khan, A. Alsaedi, J. Mol. Liq. 266, 814 (2018)CrossRefGoogle Scholar
  30. 30.
    T. Hayat, M.I. Khan, T.A. Khan, M.I. Khan, S. Ahmad, A. Alsaedi, J. Mol. Liq. 265, 629 (2018)CrossRefGoogle Scholar
  31. 31.
    S.J. Liao, Homotopy Analysis Method in Non-linear Differential Equations (Springer and Higher Education Press, Heidelberg, 2012)Google Scholar
  32. 32.
    T. Hayat, M.I. Khan, S. Qayyum, M.I. Khan, A. Alsaedi, J. Mol. Liq. 264, 375 (2018)CrossRefGoogle Scholar
  33. 33.
    A. Jafarimoghaddam, H. Aberoumand, S. Aberoumand, A.A.A. Arani, A. Habibollahzade, Eng. Sci. Technol. 20, 1515 (2017)Google Scholar
  34. 34.
    T. Hayat, F. Haider, T. Muhammad, A. Alsaedi, J. Mol. Liq. 233, 278 (2017)CrossRefGoogle Scholar
  35. 35.
    T. Hayat, M. Rashid, M.I. Khan, A. Alsaedi, Results Phys. 9, 1618 (2018)ADSCrossRefGoogle Scholar
  36. 36.
    T. Hayat, M.I. Khan, M. Farooq, A. Alsaedi, M. Waqas, T. Yasmeen, Int. J. Heat Mass Transfer 99, 702 (2016)CrossRefGoogle Scholar
  37. 37.
    M.I. Khan, M. Waqas, T. Hayat, A. Alsaedi, J. Colloid Interface Sci. 498, 85 (2017)ADSCrossRefGoogle Scholar
  38. 38.
    T. Hayat, M.I. Khan, M. Farooq, T. Yasmeen, A. Alsaedi, J. Mol. Liq. 220, 49 (2016)CrossRefGoogle Scholar
  39. 39.
    T. Hayat, M.I. Khan, S. Qayyum, A. Alsaedi, Colloids Surf. A 539, 335 (2018)CrossRefGoogle Scholar
  40. 40.
    M.I. Khan, T. Hayat, M.I. Khan, A. Alsaedi, Int. Commun. Heat Mass Transfer 91, 216 (2018)CrossRefGoogle Scholar
  41. 41.
    M.I. Khan, T. Hayat, A. Alsaedi, Results Phys. 7, 2644 (2017)ADSCrossRefGoogle Scholar
  42. 42.
    M.I. khan, S. Ullah, T. Hayat, M.I. Khan, A. Alsaedi, J. Mol. Liq. 260, 279 (2017)CrossRefGoogle Scholar
  43. 43.
    T. Hayat, S. Ahmad, M.I. Khan, A. Alsaedi, Physica B 537, 116 (2018)ADSCrossRefGoogle Scholar
  44. 44.
    A. Alsaedi, M.I. Khan, T. Hayat, J. Theor. Comput. Chem. 16, 1750064 (2017)CrossRefGoogle Scholar
  45. 45.
    T. Hayat, F. Shah, M.I. Khan, A. Alsaedi, T. Yasmeen, Micrograv. Sci. Technol. 29, 459 (2017)ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  • Tasawar Hayat
    • 1
    • 2
  • Sania Javed
    • 1
  • M. Ijaz Khan
    • 1
  • M. Imran Khan
    • 3
    Email author
  • Ahmed Alsaedi
    • 2
  1. 1.Department of MathematicsQuaid-I-Azam University 45320IslamabadPakistan
  2. 2.Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
  3. 3.Heriot Watt UniversityEdinburgh CampusEdinburghUK

Personalised recommendations