Arrhenius activation in MHD radiative Maxwell nanoliquid flow along with transformed internal energy

  • Mair KhanEmail author
  • T. Salahuddin
  • M. Y. Malik
  • Farzana Khan
Regular Article


A theoretical study is performed to analyze the behavior of transformed internal energy in a magnetohydrodynamic Maxwell nanofluid flow over a stretching sheet along with Arrhenius activation energy and chemical reaction. The suitable similarity transformations are used to convert the constituted governing nonlinear PDEs into ODEs. The Runge-Kutta based shooting approach is used in order to yield the numerical solution of the differential system. The effects of the involved parameters (Hartmann number, fluid relaxation parameter, slip parameter, Eckert number, radiation parameter, Prandtl number, Brownian parameter, small parameter, Lewis number, thermophoresis parameter, chemical reaction and Arrhenius activation energy) on velocity, temperature and concentration fields are explored through graphical investigation. The numerical results of the skin friction coefficient, rate of heat and mass transport are analyzed through graphs and tables. It is revealed that the temperature distribution augments with the increase in the Eckert number, small parameter, Brownian parameter, thermophoresis parameter and thermal radiation parameter, while reduces with the upsurge values of the Prandtl number. Moreover, the concentration profile reduces with the increase in the Lewis number. Achieved numerical results are also compared with the present data in limiting cases and excellent agreement is found.


  1. 1.
    M. Qasim, Alex. Eng. J. 52, 571 (2013)CrossRefGoogle Scholar
  2. 2.
    M. Chandrasekar, M.S. Kasiviswanathan, Proc. Eng. 127, 493 (2015)CrossRefGoogle Scholar
  3. 3.
    K. Dasa, R.P. Sharmab, A. Sarkar, J. Comput. Des. Eng. 3, 330 (2016)Google Scholar
  4. 4.
    M.H.M. Yasin, A. Ishak, I. Pop, J. Magn. & Magn. Mater. 407, 235 (2016)ADSCrossRefGoogle Scholar
  5. 5.
    S.R. Mishra, M.M. Bhatti, Chin. J. Chem. Eng. 25, 1137 (2017)CrossRefGoogle Scholar
  6. 6.
    R.K. Deka, A. Paul, A. Chaliha, Ain Shams Eng. J. 8, 643 (2017)CrossRefGoogle Scholar
  7. 7.
    L. Wu, Int. J. Therm. Sci. 112, 165 (2017)CrossRefGoogle Scholar
  8. 8.
    D. Pala, G. Mandal, Propuls. Power Res. 6, 58 (2017)CrossRefGoogle Scholar
  9. 9.
    M. Khan, M.Y. Malik, T. Salahuddin, A. Hussian, Results Phys. 8, 862 (2018)ADSCrossRefGoogle Scholar
  10. 10.
    P.R. Sharma, S. Sinha, R.S. Yadav, A.N. Filippov, Int. J. Heat Mass Transfer 117, 780 (2018)CrossRefGoogle Scholar
  11. 11.
    Bestman, Int. J. Energy Res. 14, 389 (1990)CrossRefGoogle Scholar
  12. 12.
    K.H. Abdul Maleque, ISRN Thermodyn. 1, 84637 (2013)Google Scholar
  13. 13.
    Z. Shafique, M. Mustafa, A. Mushtaq, Results Phys. 7, 627 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    K.L. Hsiao, Energy 130, 486 (2017)CrossRefGoogle Scholar
  15. 15.
    M. Mustafa, J.A. Khan, T. Hayat, A. Alsaedi, Int. J. Heat Mass Transfer 108, 1340 (2015)CrossRefGoogle Scholar
  16. 16.
    M.I. Khan, S. Qayyum, T. Hayat, M. Waqas, M.I. Khan, A. Alsaed, J. Mol. Liq. 259, 274 (2018)CrossRefGoogle Scholar
  17. 17.
    S. Nadeem, R.U. Haq, Z.H. Khan, J. Taiwan Inst. Chem. Eng. 45, 121 (2014)CrossRefGoogle Scholar
  18. 18.
    G. Zhao, Y. Jian, L. Chang, Buren, J. Magn. & Magn. Mater. 387, 111 (2017)ADSCrossRefGoogle Scholar
  19. 19.
    Y. Lio, B. Guo, J. Assoc. Arab Univ. Basic Appl. Sci. 24, 232 (2017)Google Scholar
  20. 20.
    N. Acharya, K. Das, P.K. Kundu, Int. J. Mech. Sci. 130, 167 (2017)CrossRefGoogle Scholar
  21. 21.
    G. Lebon, H. Machrafi, J. Non-Newton. Fluid Mech. 253, 1 (2018)MathSciNetCrossRefGoogle Scholar
  22. 22.
    T. Hayat, S. Ali, M.A. Farooq, A. Slaedi, PLoS ONE 10, e0129613 (2015)CrossRefGoogle Scholar
  23. 23.
    I. Khan, M.Y. Malik, T. Salahuddin, M. Khan, K.U. Rehman, Neural Comput. Appl. 30, 3581 (2018)CrossRefGoogle Scholar
  24. 24.
    A. Farooq, R. Ali, A.C. Benim, Physica A: Stat. Mech. Appl. 503, 345 (2018)ADSCrossRefGoogle Scholar
  25. 25.
    M. Khan M.Y. Malik, T. Salahuddin, J. Appl. Mech. Tech. Phys. 58, 1033 (2017)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    M. Khan T. Salahuddin, M.Y. Malik, Int. J. Heat Mass Transfer 126, 941 (2018)CrossRefGoogle Scholar
  27. 27.
    M. Khan, T. Salahuddin, M.Y. Malik, J. Braz. Soc. Mech. Sci. Eng. 40, 457 (2018)CrossRefGoogle Scholar
  28. 28.
    M. Khan, A. Shahid, M.Y. Malik, T. Salahuddin, J. Mol. Liq. 251, 7 (2018)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Mair Khan
    • 1
    Email author
  • T. Salahuddin
    • 2
  • M. Y. Malik
    • 1
    • 3
  • Farzana Khan
    • 1
  1. 1.Department of MathematicsQuaid-i-Azam UniversityIslamabadPakistan
  2. 2.Department of MathematicsMirpur University of Science and Technology (MUST)MirpurPakistan
  3. 3.Department of Mathematics, College of SciencesKing Khalid UniversityAbhaSaudi Arabia

Personalised recommendations