Advertisement

Numerical analysis of the full MHD model with the Galerkin finite-element method

  • Mubbashar NazeerEmail author
  • Nasir Ali
  • Tariq Javed
  • M. Waqas Nazir
Regular Article
  • 40 Downloads

Abstract.

The steady-state, two-dimensional mixed-convection flow inside a square conduit subject to an external magnetic field is investigated here. The full MHD equations are used to model the set of governing partial differential equations for the problem under consideration. These equations along with appropriate boundary conditions are simulated by employing the variational finite-element method for the important parameters of the problem. The effects of these parameters on streamlines, temperature field, mid-section velocity and heat transfer rate are shown and discussed in detail. A comparison of the full MHD model with the low-Rm model is carried out. The grid independent test is also included to assure the convergence of the obtained solution. The analysis predicts that the intensity of flow circulations increases with increasing magnetic Reynolds number for any choice of the Prandtl number. Further, the average Nusselt number at both the right and bottom walls is an increasing function of Rm. Moreover, the low-Rm model predicts lower values of the average Nusselt number when compared to the result of the full MHD model.

References

  1. 1.
    O. Aydin, A. Unal, T. Ayhan, Numer. Heat Transf. A 36, 585 (1999)ADSCrossRefGoogle Scholar
  2. 2.
    N.B. Morley, S. Smolentsev, L. Barleon, I.R. Kirillov, M. Takahashi, Fusion Eng. Des. 51--52, 701 (2000)CrossRefGoogle Scholar
  3. 3.
    A. Juel, T. Mullin, H.B. Hadid, D. Henry, J. Fluid Mech. 378, 97 (1999)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    T. Alboussiere, J.P. Garandet, R. Moreau, J. Fluid Mech. 253, 545 (1993)ADSCrossRefGoogle Scholar
  5. 5.
    L. Davoust, M.D. Cowley, R. Moreau, R. Bolcato, J. Fluid Mech. 400, 59 (1999)ADSCrossRefGoogle Scholar
  6. 6.
    N.M. Al-Najem, K.M. Khanafer, M.M. El-Rafaee, Int. J. Numer. Methods Heat Fluid Flow 8, 651 (1998)CrossRefGoogle Scholar
  7. 7.
    H.F. Oztop, M. Oztop, Y. Varol, Commun. Nonlinear Sci. Numer. Simul. 14, 770 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    H.F. Oztop, K. Al-Salem, I. Pop, Int. J. Heat Mass Transfer 54, 3494 (2011)CrossRefGoogle Scholar
  9. 9.
    M.A. Sheremet, H.F. Oztop, I. Pop, J. Magn. & Magn. Mater. 416, 37 (2016)ADSCrossRefGoogle Scholar
  10. 10.
    M.A. Sheremet, H.F. Oztop, I. Pop, K. Al-Salem, Int. J. Heat Mass Transfer 103, 955 (2016)CrossRefGoogle Scholar
  11. 11.
    R.U. Haq, F.A. Soomro, T. Mekkaoui, Q.M. Al-Mdallal, Int. J. Heat Mass Transfer 121, 1168 (2018)CrossRefGoogle Scholar
  12. 12.
    M. Nazeer, N. Ali, T. Javed, Can. J. Phys. 97, 1 (2019)ADSCrossRefGoogle Scholar
  13. 13.
    M. Nazeer, N. Ali, T. Javed, J. Porous Media 21, 953 (2018)CrossRefGoogle Scholar
  14. 14.
    M. Nazeer, N. Ali, T. Javed, Can. J. Phys. 96, 576 (2018)ADSCrossRefGoogle Scholar
  15. 15.
    T. Javed, Z. Mehmood, I. Pop, Int. J. Numer. Methods Heat Fluid Flow 27, 1231 (2017)CrossRefGoogle Scholar
  16. 16.
    T. Javed, Z. Mehmood, M.A. Siddiqui, J. Braz. Soc. Mech. Sci. Eng. 39, 3897 (2017)CrossRefGoogle Scholar
  17. 17.
    T. Javed, M.A. Siddiqui, Z. Mehmood, I. Pop, Z. Naturforsch. A 70, 919 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    K.A. Salem, H.F. Oztop. I. Pop, Y. Varol, Int. J. Heat Mass Transfer 55, 1103 (2012)CrossRefGoogle Scholar
  19. 19.
    M. Turkyilmazoglu, Phys. Fluids 29, 013302 (2017)ADSCrossRefGoogle Scholar
  20. 20.
    M. Turkyilmazoglu, Commun. Nonlinear Sci. Numer. Simul. 63, 373 (2018)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    M. Turkyilmazoglu, Int. J. Heat Mass Transfer 106, 127 (2017)CrossRefGoogle Scholar
  22. 22.
    R. Moreau, Magnetohydrodynamics (Kluwer, London, 1990)Google Scholar
  23. 23.
    I.E. Sarris, G.K. Zikos, A.P. Grecos, N.S. Vlachos, Numer. Heat Transf. B 50, 157 (2006)ADSCrossRefGoogle Scholar
  24. 24.
    T. Basak, S. Roy, P.K. Sharma, I. Pop, Int. J. Heat Mass Transfer 52, 2224 (2009)CrossRefGoogle Scholar
  25. 25.
    N. Ali, M. Nazeer, T. Javed, M.A. Siddiqui, Heat Transf. Res. 49, 457 (2018)CrossRefGoogle Scholar
  26. 26.
    M. Nazeer, N. Ali, T. Javed, F. Abbas, Meccanica 53, 3279 (2018)MathSciNetCrossRefGoogle Scholar
  27. 27.
    N. Ali, F. Nazeer, M. Nazeer, Z. Naturforsch. A 73, 265 (2018)ADSCrossRefGoogle Scholar
  28. 28.
    M. Nazeer, N. Ali, T. Javed, Int. J. Numer. Methods Heat Fluid Flow 28, 2404 (2018)CrossRefGoogle Scholar
  29. 29.
    M. Nazeer, N. Ali, T. Javed, Z. Asghar, Eur. Phys. J. Plus 133, 423 (2018)CrossRefGoogle Scholar
  30. 30.
    J.N. Reddy, An Introduction to the Finite Element Method (McGraw Hill, New York, 1993)Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsRiphah International University Faisalabad CampusFaisalabadPakistan
  2. 2.Department of Mathematics and StatisticsInternational Islamic University IslamabadIslamabadPakistan

Personalised recommendations