Advertisement

New features of the fractional Euler-Lagrange equations for a physical system within non-singular derivative operator

  • Dumitru Baleanu
  • Samaneh Sadat Sajjadi
  • Amin JajarmiEmail author
  • Jihad H. Asad
Regular Article
  • 24 Downloads

Abstract.

Free motion of a fractional capacitor microphone is investigated in this paper. First, a capacitor microphone is introduced and the Euler-Lagrange equations are established. Due to the fractional derivative's the history independence, the fractional order displacement and electrical charge are used in the equations. Fractional differential equations involve in the right- and left-hand-sided derivatives which is reduced to a boundary value problem. Finally, numerical simulations are obtained and dynamical behaviors are numerically discussed.

References

  1. 1.
    W. Greiner, Classical Mechanics, Systems of Particles and Hamiltonian Dynamics (Springer-Verlag, Berlin Heidelberg, 2010)Google Scholar
  2. 2.
    R. Gorenflo, F. Mainardi, Fractional calculus: Integral and Differential Equations of Fractional Orders, Fractals and Fractional Calculus in Continoum Mechanics (Springer-Verlag, Wien and New York, 1997)Google Scholar
  3. 3.
    R. Hilfer, Applications of Fraction Calculus in Physics (World Scientific, Singapore, 2000)Google Scholar
  4. 4.
    D. Baleanu, J.A.T. Machado, A.C.J. Luo, Fractional Dynamics and Control (Springer-Verlag, New York, 2012)Google Scholar
  5. 5.
    A. Jajarmi, M. Hajipour, E. Mohammadzadeh, D. Baleanu, J. Franklin Inst. 335, 3938 (2018)CrossRefGoogle Scholar
  6. 6.
    A. Jajarmi, D. Baleanu, J. Vib. Control 24, 2430 (2018)MathSciNetCrossRefGoogle Scholar
  7. 7.
    A. Jajarmi, D. Baleanu, Chaos, Soliton. Fractals 113, 221 (2018)ADSCrossRefGoogle Scholar
  8. 8.
    D. Baleanu, A. Jajarmi, E. Bonyah, M. Hajipour, Adv. Differ. Equ. 2018, 230 (2018)CrossRefGoogle Scholar
  9. 9.
    D. Kumar, J. Singh, D. Baleanu, Eur. Phys. J. Plus 133, 70 (2018)CrossRefGoogle Scholar
  10. 10.
    F. Tchier, M. Inc, A. Yusuf, A.I. Aliyu, D. Baleanu, Eur. Phys. J. Plus 133, 240 (2018)CrossRefGoogle Scholar
  11. 11.
    D. Kumar, J. Singh, D. Baleanu, S. Rathore, Eur. Phys. J. Plus 133, 259 (2018)CrossRefGoogle Scholar
  12. 12.
    M. Hajipour, A. Jajarmi, D. Baleanu, H.G. Sun, Commun. Nonlinear Sci. 69, 119 (2019)CrossRefGoogle Scholar
  13. 13.
    F. Riewe, Phys. Rev. E 53, 1890 (1996)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    F. Riewe, Phys. Rev. E 55, 3581 (1997)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    N. Laskin, Phys. Rev. E 62, 3135 (2000)ADSCrossRefGoogle Scholar
  16. 16.
    N. Laskin, Phys. Lett. A 268, 298 (2000)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    N. Laskin, Phys. Rev. E 66, 056108 (2002)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    D. Baleanu, S. Muslih, Phys. Scr. 72, 119 (2005)ADSCrossRefGoogle Scholar
  19. 19.
    D. Baleanu, A. Jajarmi, J.H. Asad, T. Blaszczyk, Acta Phys. Pol. A 131, 1561 (2017)CrossRefGoogle Scholar
  20. 20.
    D. Baleanu, J.H. Asad, A. Jajarmi, Proc. Rom. Acad. A 19, 361 (2018)Google Scholar
  21. 21.
    D. Baleanu, J.H. Asad, A. Jajarmi, Proc. Rom. Acad. A 19, 447 (2018)Google Scholar
  22. 22.
    A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations (Elsevier, Amsterdam, 2006)Google Scholar
  23. 23.
    D. Baleanu, J.H. Asad, I. Petras, Rom. Rep. Phys. 64, 907 (2012)Google Scholar
  24. 24.
    D. Baleanu, J.H. Asad, I. Petras, Commun. Theor. Phys. 61, 221 (2014)CrossRefGoogle Scholar
  25. 25.
    S. Momani, Z. Odibat, Numer. Methods Part. Differ. Equ. 24, 1416 (2008)CrossRefGoogle Scholar
  26. 26.
    K. Diethelm, N.J. Ford, A.D. Freed, Nonlinear Dyn. 29, 3 (2002)CrossRefGoogle Scholar
  27. 27.
    A. Atangana, D. Baleanu, Therm. Sci. 20, 763 (2016)CrossRefGoogle Scholar
  28. 28.
    H. Srivastava, Z. Tomovski, Appl. Math. Comput. 211, 198 (2009)MathSciNetGoogle Scholar
  29. 29.
    Z. Tomovski, R. Hilfer, H.M. Srivastava, Integr. Transf. Spec. F 21, 797 (2010)CrossRefGoogle Scholar
  30. 30.
    R. Gorenflo, A.A. Kilbas, F. Mainardi, S.V. Rogosin, Mittag-Leffler Functions, Related Topics and Applications (Springer, Berlin, 2014)Google Scholar
  31. 31.
    A.A. Kilbas, M. Saigo, R.K. Saxena, Integr. Transf. Spec. F 15, 31 (2004)CrossRefGoogle Scholar
  32. 32.
    K.S. Miller, S.G. Samko, Real Anal. Exch. 23, 753 (1997-1998)Google Scholar
  33. 33.
    D.P. Ahokposi, A. Atangana, D.P. Vermeulen, Eur. Phys. J. Plus 132, 165 (2017)CrossRefGoogle Scholar
  34. 34.
    A. Tateishi, H. Ribeiro, E.K. Lenzi, Front. Phys. 5, 1 (2017)CrossRefGoogle Scholar
  35. 35.
    D. Baleanu, A. Fernandez, Commun. Nonlinear Sci. 59, 444 (2018)CrossRefGoogle Scholar
  36. 36.
    A.J. van der Schaft, Port-Hamiltonian Systems: Network Modeling and Control of Nonlinear Physical Systems, in Advanced Dynamics and Control of Structures and Machines, edited by H. Irschik, K. Schlacher (International Centre for Mechanical Sciences, Springer, Vienna, 2004)Google Scholar
  37. 37.
    O.P. Agrawal, J. Math. Anal. Appl. 272, 368 (2000)ADSCrossRefGoogle Scholar
  38. 38.
    C. Li, F. Zeng, Numer. Funct. Anal. Opt. 34, 149 (2013)CrossRefGoogle Scholar
  39. 39.
    T. Abdeljawad, D. Baleanu, J. Nonlinear Sci. Appl. 10, 1098 (2017)MathSciNetCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of Arts and SciencesCankaya UniversityAnkaraTurkey
  2. 2.Institute of Space SciencesMagurele, BucharestRomania
  3. 3.Department of Electrical and Computer EngineeringHakim Sabzevari UniversitySabzevarIran
  4. 4.Department of Electrical EngineeringUniversity of BojnordBojnordIran
  5. 5.Palestine Technical UniversityCollege of Arts and Sciences, Department of PhysicsTulkarmPalestine

Personalised recommendations