Advertisement

Aharonov-Bohm effect in pseudo-elliptic quantum rings: influence of geometry, eccentricity and electric field

  • Doina Bejan
  • Cristina StanEmail author
Regular Article
  • 21 Downloads

Abstract.

We theoretically investigated the influence of shape, structural distortion and electric field on the Aharonov-Bohm (AB) oscillations observed in the energy and in the nonlinear absorption spectra of a pseudo-elliptic quantum ring (PEQR). The potential that describes the PEQR is a combination of parabolic and inverse square potentials, that allows a detailed phenomenological analysis of the variation of AB oscillations period with the magnetic field. For a moderate outer ellipse eccentricity, the decrement of ring width, the small displacement of the inner circle of the ring along the x(y) -axis or an in-plane electric field directed along the x(y) -axis lead to the suppression of the AB oscillations for the lower energy levels and to the decrement of their period and amplitude for the higher levels. The electric field has a similar effect on the energy spectrum as the inner circle displacement along the same direction. All absorption spectra display the influence of AB oscillations in the energy and in the amplitude of some peaks. The spectra have particular features depending on the applied fields and can be potentially used as sensitive tools for deciphering the presence and direction of an electric field or of eccentricity.

References

  1. 1.
    Y. Aharonov, D. Bohm, Phys. Rev. 115, 485 (1959)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    A. Tonomura, N. Osakabe, T. Matsuda, T. Kawasaki, J. Endo, S. Yano, H. Yamada, Phys. Rev. Lett. 56, 792 (1986)ADSCrossRefGoogle Scholar
  3. 3.
    N. Osakabe, T. Matsuda, T. Kawasaki, J. Endo, A. Tonomura, S. Yano, H. Yamada, Phys. Rev. A 34, 815 (1986)ADSCrossRefGoogle Scholar
  4. 4.
    S. Pedersen A.E. Hansen, A. Kristensen, C.B. Sørensen, P.E. Lindelof, Phys. Rev. B 61, 5457 (2000)ADSCrossRefGoogle Scholar
  5. 5.
    G. Timp, P.M. Mankiewich, P. deVegvar, R. Behringer, J.E. Cunningham, R.E. Howard, H.U. Baranger, J.K. Jain, Phys. Rev. B 39, 6226 (1989)ADSCrossRefGoogle Scholar
  6. 6.
    G. Timp, A.M. Chang, J.E. Cunningham, T.Y. Chang, P. Mankiewich, R. Behringer, R.E. Howard, Phys. Rev. Lett. 58, 2814 (1987)ADSCrossRefGoogle Scholar
  7. 7.
    T. Heinzel, R. Held, S. Lüscher, K. Ensslin, W. Wegscheider, M. Bichler, Physica E 9, 84 (2001)ADSCrossRefGoogle Scholar
  8. 8.
    J.A. Lorke, R.J. Luyken, A.O. Govorov, J.P. Kotthaus, J.M. Garcia, P.M. Petroff, Phys. Rev. Lett. 84, 2223 (2000)ADSCrossRefGoogle Scholar
  9. 9.
    F. Ding, N. Akopian, B. Li, U. Perinetti, A. Govorov, F.M. Peeters, C.C. BofBufon, C. Deneke, Y.H. Chen, A. Rastelli, O.G. Schmidt, V. Zwiller, Phys. Rev. B 82, 075309 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    M.D. Teodoro, V.L. Campo, V. Lopez-Richard, E. Marega, G.E. Marques, Y. GalvãoGobato, F. Iikawa, M.J.S.P. Brasil, Z.Y. AbuWaar, V.G. Dorogan, Yu.I. Mazur, M. Benamara, G.J. Salamo, Phys. Rev. Lett. 104, 086401 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    A. Kristensen, P.E. Lindelof, J. Bo Jensen, M. Zaffalon, J. Hollingbery, S.W. Pedersen, J. Nygård, H. Bruus, S.M. Reimann, C.B. Sørensen, M. Michel, A. Forchel, Physica B 249-251, 180 (1998)ADSCrossRefGoogle Scholar
  12. 12.
    A. Fuhrer, S. Lüscher, T. Ihn, T. Heinzel, K. Ensslin, W. Wegscheider, M. Bichler, Nature 413, 822 (2001)ADSCrossRefGoogle Scholar
  13. 13.
    T. Raz, D. Ritter, G. Bahir, Appl. Phys. Lett. 82, 1706 (2003)ADSCrossRefGoogle Scholar
  14. 14.
    J.M. García, G. Medeiros-Ribeiro, K. Schmidt, T. Ngo, J.L. Feng, A. Lorke, J. Kotthaus, P.M. Petroff, Appl. Phys. Lett. 71, 2014 (1997)ADSCrossRefGoogle Scholar
  15. 15.
    M. Hanke, Yu.I. Mazur, E. Marega jr., Z.Y. AbuWaar, G.J. Salamo, P. Schäfer, M. Schmidbauer, Appl. Phys. Lett. 91, 043103 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    Y.D. Sibirmovskii, I.S. Vasil'evskii, A.N. Vinichenko, I.S. Eremin, D.M. Zhigunov, N.I. Kargin, O.S. Kolentsova, P.A. Martyuk, M.N. Strikhanov, Semiconductors 49, 638 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    V. Kotimäki, E. Räsänen, Phys. Rev. B 81, 245316 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    A. Bruno-Alfonso, A. Latgè, Phys. Rev. B 77, 205303 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    J.A. Vinasco, A. Radu, E. Kasapoglu, R.L. Restrepo, A.L. Morales, E. Feddi, M.E. Mora-Ramos, C.A. Duque, Sci. Rep. 8, 13299 (2018)ADSCrossRefGoogle Scholar
  20. 20.
    L.I. Magarill, D.A. Romanov, A.V. Chaplik, JETP 83, 361 (1996)ADSGoogle Scholar
  21. 21.
    J. Planelles, F. Rajadell, J.I. Climente, Nanotechnology 18, 375402 (2007)CrossRefGoogle Scholar
  22. 22.
    G.A. Farias, M.H. Degani, J.A.K. Freire, J. Costa e Silva, R. Ferreira, Phys. Rev. B 77, 085316 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    Li Hai-Tao, Liu Li-Zhe, Liu Jian-Jun, Chi. Phys. Lett. 25, 4101 (2008)ADSCrossRefGoogle Scholar
  24. 24.
    Bing Li, Yong-Hui Liu, Jian-Jun Liu, Phys. Lett. A 375, 1205 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    S. Ghajarpour-Nobandegani, M.J. Karimi, Opt. Mater. 82, 75 (2018)ADSCrossRefGoogle Scholar
  26. 26.
    A. Bruno-Alfonso, A. Latgè, Phys. Rev. B 71, 125312 (2005)ADSCrossRefGoogle Scholar
  27. 27.
    M.M. Milošević, M. Tadić, F.M. Peeters, Nanotechnology 19, 455401 (2008)CrossRefGoogle Scholar
  28. 28.
    T. Chakraborty, A. Manaselyan, M. Barseghyan, D. Laroze, Phys. Rev. B 97, 041304(R) (2018)ADSCrossRefGoogle Scholar
  29. 29.
    H.M. Baghramyan, M.G. Barseghyan, D. Laroze, Sci. Rep. 7, 13299 (2017)CrossRefGoogle Scholar
  30. 30.
    H.M. Baghramyan, M.G. Barseghyan, A.A. Kirakosyan, J.H. Ojeda, J. Bragard, D. Laroze, Sci. Rep. 8, 6145 (2018)ADSCrossRefGoogle Scholar
  31. 31.
    D. Bejan, C. Stan, Philos. Mag. 99, 492 (2019) and references thereinADSCrossRefGoogle Scholar
  32. 32.
    E.C. Niculescu, D. Bejan, Philos. Mag. 97, 2089 (2017)ADSCrossRefGoogle Scholar
  33. 33.
    D. Bejan, Phys. Lett. A 381, 3307 (2017)ADSCrossRefGoogle Scholar
  34. 34.
    E.C. Niculescu, C. Stan, D. Bejan, C. Cartoaje, J. Appl. Phys. 122, 144301 (2017)ADSCrossRefGoogle Scholar
  35. 35.
    D. Bejan, C. Stan, E.C. Niculescu, Opt. Mater. 78, 207 (2018)ADSCrossRefGoogle Scholar
  36. 36.
    C.M. Duque, M.E. Mora-Ramos, C.A. Duque, Ann. Phys. 524, 327 (2012)CrossRefGoogle Scholar
  37. 37.
    G. Liu, K. Guo, C. Wang, Physica B 407, 2334 (2012)ADSCrossRefGoogle Scholar
  38. 38.
    W.-C. Tan, J.C. Inkson, Semicond. Sci. Technol. 11, 1635 (1996)ADSCrossRefGoogle Scholar
  39. 39.
    W.-C. Tan, J.C. Inkson, Phys. Rev. B 53, 6947 (1996)ADSCrossRefGoogle Scholar
  40. 40.
    W.-C. Tan, J.C. Inkson, Phys. Rev. B 60, 5626 (1999)ADSCrossRefGoogle Scholar
  41. 41.
    D. Bejan, G. Raseev, Surf. Sci. 528, 163 (2003)ADSCrossRefGoogle Scholar
  42. 42.
    R.E. Acosta, A.L. Morales, C.M. Duque, M.E. Mora-Ramos, C.A. Duque, Phys. Status Solidi B 253, 744 (2016)ADSCrossRefGoogle Scholar
  43. 43.
    R.D. Cook, D.S. Malkus, M.E. Plesha, Concepts and Applications of Finite Element Analysis, 3rd edition (John Wiley & Sons, New York, 1989)Google Scholar
  44. 44.
    E. Paspalakis, J. Boviatsis, S. Baskoutas, J. Appl. Phys. 114, 153107 (2013)ADSCrossRefGoogle Scholar
  45. 45.
    T. Ihn, Semiconductor Nanostructures: Quantum States and Electronic Transport (Oxford University Press, New York, 2010)Google Scholar
  46. 46.
    D. Bejan, E.C. Niculescu, Physica E 75, 149 (2016)ADSCrossRefGoogle Scholar
  47. 47.
    G.O. de Sousa, D.R. da Costa, A. Chaves, G.A. Farias, F.M. Peeters, Phys. Rev. B 95, 205414 (2017)ADSCrossRefGoogle Scholar
  48. 48.
    D. Mailly, C. Chapelier, A. Benoit, Phys. Rev. Lett. 70, 2020 (1993)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of PhysicsUniversity of BucharestBucharestRomania
  2. 2.Physics Department“Politehnica” University of BucharestBucharestRomania

Personalised recommendations