Advertisement

The gravitational decoupling method: the higher-dimensional case to find new analytic solutions

  • Milko EstradaEmail author
  • Reginaldo Prado
Regular Article

Abstract.

We provide a higher-dimensional extension of the gravitational decoupling method. This extended method allows to obtain new analytic and well-behaved solutions that could be associated to higher-dimensional stellar distributions. Furthermore, we find a new five-dimensional anisotropic and well-behaved analytical solution.

References

  1. 1.
    M. Ruderman, Annu. Rev. Astron. Astrophys. 10, 427 (1972)ADSCrossRefGoogle Scholar
  2. 2.
    M. Mak, T. Harko, Chin. J. Astron. Astrophys. 2, 248 (2002)ADSCrossRefGoogle Scholar
  3. 3.
    H. Abreu, H. Hernandez, L. Nunez, Class. Quantum Grav. 24, 4631 (2007)ADSCrossRefGoogle Scholar
  4. 4.
    M. Jasim, D. Deb, S. Ray, Y. Gupta, S.R. Chowdhury, Eur. Phys. J. C 78, 603 (2018)ADSCrossRefGoogle Scholar
  5. 5.
    S. Maurya, Y. Gupta, B. Dayanandan, S. Ray, Eur. Phys. J. C 76, 266 (2016)ADSCrossRefGoogle Scholar
  6. 6.
    K.N. Singh, N. Pant, N. Tewari, A.K. Aria, Eur. Phys. J. A 54, 77 (2018)ADSCrossRefGoogle Scholar
  7. 7.
    J. Ovalle, Phys. Rev. D 95, 104019 (2017)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    J. Ovalle, R. Casadio, R. da Rocha, A. Sotomayor, Eur. Phys. J. C 78, 122 (2018)ADSCrossRefGoogle Scholar
  9. 9.
    L. Gabbanelli, Á. Rincón, C. Rubio, Eur. Phys. J. C 78, 370 (2018)ADSCrossRefGoogle Scholar
  10. 10.
    M. Estrada, F. Tello-Ortiz, Eur. Phys. J. Plus 133, 453 (2018)CrossRefGoogle Scholar
  11. 11.
    M. Sharif, S. Sadiq, Eur. Phys. J. C 78, 410 (2018)ADSCrossRefGoogle Scholar
  12. 12.
    E. Morales, F. Tello-Ortiz, Eur. Phys. J. C 78, 618 (2018)ADSCrossRefGoogle Scholar
  13. 13.
    R.P. Graterol, Eur. Phys. J. Plus 133, 244 (2018)CrossRefGoogle Scholar
  14. 14.
    M. Sharif, S. Sadiq, Eur. Phys. J. Plus 133, 245 (2018)CrossRefGoogle Scholar
  15. 15.
    C.L. Heras, P. Leon, Fortsch. Phys. 66, 070036 (2018)Google Scholar
  16. 16.
    E. Morales, F. Tello-Ortiz, Eur. Phys. J. C 78, 841 (2018)ADSCrossRefGoogle Scholar
  17. 17.
    A.S.J. Ovalle, Eur. Phys. J. Plus 133, 428 (2018)CrossRefGoogle Scholar
  18. 18.
    S.K. Maurya, F. Tello-Ortiz, Eur. Phys. J. C 79, 85 (2019)ADSCrossRefGoogle Scholar
  19. 19.
    J. Ovalle, R. Casadio, R. da Rocha, A. Sotomayor, Z. Stuchlik, Eur. Phys. J. C 78, 960 (2018)ADSCrossRefGoogle Scholar
  20. 20.
    E. Contreras, P. Bargueño, Eur. Phys. J. C 78, 558 (2018)ADSCrossRefGoogle Scholar
  21. 21.
    E. Contreras, P. Bargueño, Eur. Phys. J. C 78, 985 (2018)ADSCrossRefGoogle Scholar
  22. 22.
    E. Contreras, Gravitational decoupling in 2+1 dimensional space-times with cosmological term, arXiv:1901.00231Google Scholar
  23. 23.
    E. Contreras, Eur. Phys. J. C 78, 678 (2018)ADSCrossRefGoogle Scholar
  24. 24.
    G. Panotopoulos, A. Rincon, Eur. Phys. J. C 78, 851 (2018)ADSCrossRefGoogle Scholar
  25. 25.
    J. Ovalle, R. Casadio, R. da Rocha, A. Sotomayor, Z. Stuchlik, EPL 124, 20004 (2018)ADSCrossRefGoogle Scholar
  26. 26.
    J. Ovalle, Phys. Lett. B 788, 213 (2019)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    J. Ovalle, Mod. Phys. Lett. A 23, 3247 (2008)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    J. Ovalle, F. Linares, A. Pasqua, A. Sotomayor, Class. Quantum Grav. 30, 175019 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    R. Casadio, J. Ovalle, R. Da Rocha, Class. Quantum Grav. 32, 215020 (2015)ADSCrossRefGoogle Scholar
  30. 30.
    B. Zwiebach, A First Course in String Theory (Cambridge University Press, 2006)Google Scholar
  31. 31.
    L. Randall, R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    L. Randall, R. Sundrum, Phys. Rev. Lett. 83, 4690 (1999)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    R. Aros, M. Estrada, Phys. Rev. D 88, 027508 (2013)ADSCrossRefGoogle Scholar
  34. 34.
    R. Emparan, H.S. Reall, Living Rev. Relativ. 11, 6 (2008)ADSCrossRefGoogle Scholar
  35. 35.
    R. Aros, M. Estrada, Regular black holes and its thermodynamics in Lovelock gravity, arXiv:1901.08724Google Scholar
  36. 36.
    S.H. Brian Chilambwe, S.D. Maharaj, Int. J. Mod. Phys. D 24, 1550051 (2015)CrossRefGoogle Scholar
  37. 37.
    N. Dadhich, S. Hansraj, B. Chilambwe, Int. J. Mod. Phys. D 26, 1750056 (2017)ADSCrossRefGoogle Scholar
  38. 38.
    A. Molina, N. Dadhich, A. Khugaev, Gen. Relativ. Gravit. 49, 96 (2017)ADSCrossRefGoogle Scholar
  39. 39.
    A.M. Avas Khugaev, Naresh Dadhich, Phys. Rev. D 94, 064065 (2016)ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    P. Bhar, F. Rahaman, S. Ray, V. Chatterjee, Eur. Phys. J. C 75, 190 (2015)ADSCrossRefGoogle Scholar
  41. 41.
    B. Paul, S. Dey, Astrophys. Space Sci. 363, 220 (2018)ADSCrossRefGoogle Scholar
  42. 42.
    R. Chan, L. Herrera, N. Santos, Mon. Not. R. Astron. Soc. 265, 533 (1993)ADSCrossRefGoogle Scholar
  43. 43.
    H. Heintzmann, W. Hillebrandt, Astron. Astrophys. 38, 51 (1975)ADSGoogle Scholar
  44. 44.
    C. Germani, R. Maartens, Phys. Rev. D 64, 124010 (2001)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de Física, Facultad de ciencias básicasUniversidad de AntofagastaAntofagastaChile
  2. 2.Instituto de Matemática, Física y EstadísticaUniversidad de las AméricasProvidencia, SantiagoChile
  3. 3.Universidad Tecnológica de ChileINACAPSantiagoChile

Personalised recommendations