Advertisement

Exact solutions of semi-discrete sine-Gordon equation

  • Y. HanifEmail author
  • U. Saleem
Regular Article
  • 32 Downloads

Abstract.

In this paper, we study a semi-discrete sine-Gordon (sd-SG) equation and compute various types of solutions analytically. We apply Darboux transformation to the associated spectral problem and construct N-soliton solutions of sd-SG equation in terms of ratio of ordinary determinants. In addition, we also construct explicit expressions of discrete one-kink, two-kink, kink-antikink, breather and degenerate soliton solutions of sd-SG equation in zero background.

References

  1. 1.
    A. Barone, F. Esposito, C.J. Magee, A.C. Scott, Riv. Nuovo Cimento 1, 227 (1971)CrossRefGoogle Scholar
  2. 2.
    A.C. Scott, F.Y.F. Chu, D.W. McLaughlin, Proc. IEEE 61, 1443 (1973)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    G.M. Lamb, Elements of soliton theory (Wiley, New York, 1980)Google Scholar
  4. 4.
    R.K. Dodd, J.C. Eilbeck, J.D. Gibbon, H.C. Morris, Solitons and Nonlinear Wave Equation (Academic Press, London, 1982)Google Scholar
  5. 5.
    M.J. Ablowitz, D.J. Kaup, A.C. Newell, H. Segur, Phys. Lett. 30, 1262 (1973)CrossRefGoogle Scholar
  6. 6.
    M.J. Ablowitz, D.J. Kaup, A.C. Newell, H. Segur, Phys. Rev. Lett. 31, 125 (1973)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    L.D. Faddeev, L.A. Takhtajan, Hamiltonian Methods in the Theory of Solitons, in Springer Series in Soviet Mathematics (Springer, Berlin, 1987)Google Scholar
  8. 8.
    C. Rogers, W.F. Shadwick, Bäcklund Transformations and their Applications, in Mathematics in Science and Engineering, Vol. 161 (Academic, New York, 1982)Google Scholar
  9. 9.
    J. Rubinstein, J. Math. Phys. 11, 258 (1970)ADSCrossRefGoogle Scholar
  10. 10.
    R. Hirota, J. Phys. Soc. Jpn. 33, 1459 (1972)ADSCrossRefGoogle Scholar
  11. 11.
    M.J. Ablowitz, H. Segur, Solitons and the Inverse Scattering Transform (SIAM, Philadelphia, 1981)Google Scholar
  12. 12.
    E. Bour, J. Ecole Imperiale Polytechn. 19, 1 (1862)Google Scholar
  13. 13.
    J.C. Maraver, P.G. Kevrekidis, F. Williams, The sine-Gordon Model and its Applications, From Pendulas and Josphosen Junction to Gravity and High Energy Physics (Springer Cham, Heidelberg, New York, Dordrecht, London, 2014)Google Scholar
  14. 14.
    I.O. Kulik, Sov. Phys. JETP 24, 1307 (1967)ADSGoogle Scholar
  15. 15.
    J. Frenkel, T. Kontorova, J. Phys. (USSR) 1, 137 (1939)Google Scholar
  16. 16.
    C.P. Bean, R.W. deBlois, Bull. Am. Phys. Soc. 4, 53 (1959)Google Scholar
  17. 17.
    S. Yomosa, Am. Phys. Soc. A 27, 2120 (1983)MathSciNetGoogle Scholar
  18. 18.
    M.J. Ablowitz, J.F. Ladik, J. Math. Phys. 17, 1011 (1976)ADSCrossRefGoogle Scholar
  19. 19.
    M.J. Ablowitz, J.F. Ladik, Stud. Appl. Math. 55, 213 (1977)CrossRefGoogle Scholar
  20. 20.
    R. Hirota, J. Phys. Soc. Jpn. 43, 4116 (1977)Google Scholar
  21. 21.
    R. Hirota, J. Phys. Soc. Jpn. 43, 2074 (1977)ADSCrossRefGoogle Scholar
  22. 22.
    R.E. Mickens, Difference Equations: Theory and Applications (Chapman & Hall, USA, 1990)Google Scholar
  23. 23.
    G. Fulford, P. Forrester, A. Jones, Modelling with Differential and Difference Equations (Cambridge University Press, UK, 1997)Google Scholar
  24. 24.
    M.J. Ablowitz, Y. Ohta, A.D. Trubatch, Chaos, Soliton Fractals 11, 159 (2000)ADSCrossRefGoogle Scholar
  25. 25.
    J. Hietarinta, F.W. Nijhoff, J. Satsuma, J. Phys. A 34, 10337 (2001)ADSCrossRefGoogle Scholar
  26. 26.
    M.J. Ablowitz, B. Prinariet, A.D. Trubatch, Discrete and continuous nonlinear Schrödinger systems (Cambridge University Press, 2004)Google Scholar
  27. 27.
    Y.B. Suris, The problem of integrable discretization: Hamiltonian approach (Birkhäuser, 2012)Google Scholar
  28. 28.
    J. Hietarinta, N. Joshi, F.W. Nijhoff, Discrete Systems and Integrability (Cambridge University Press, 2016)Google Scholar
  29. 29.
    T. Tsuchida, J. Phys. A 35, 7827 (2002)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    J.J.C. Nimmo, J. Phys. A 30, 8693 (1997)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    S.L. Zhao, J. Nonlinear Math. Phys. 23, 544 (2016)MathSciNetCrossRefGoogle Scholar
  32. 32.
    S.L. Zhao, Y.Y. Sun, Z. Naturforsch. A 71, 1151 (2016)ADSGoogle Scholar
  33. 33.
    R. Hirota, J. Phys. Soc. Jpn. 43, 2079 (1977)ADSCrossRefGoogle Scholar
  34. 34.
    S.J. Orfanidis, Phys. Rev. D 18, 3822 (1978)ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    S.J. Orfanidis, Phys. Rev. D 18, 3828 (1978)ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    D. Levi, O. Ragnisco, M. Bruschi, Nuovo Cimento A 58, 56 (1980)ADSCrossRefGoogle Scholar
  37. 37.
    L. Pilloni, D. Levi, Phys. Lett. A 92, 5 (1982)ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    M. Boiti, F. Pempinelli, B. Prinari, A. Spire, Inverse Prob. 18, 1309 (2002)ADSCrossRefGoogle Scholar
  39. 39.
    X. Kou, D.J. Zhang, Y. Si, S.L. Zhao, Commun. Theor. Phys. 55, 545 (2011)ADSCrossRefGoogle Scholar
  40. 40.
    J. Zhou, D.J. Zhang, S.L. Zhao, Phys. Lett. A 373, 3248 (2009)ADSMathSciNetCrossRefGoogle Scholar
  41. 41.
    V.B. Matveev, M.A. Salle, Darboux Transformations and Soliton (Springer-Verlag, Germany, 1991)Google Scholar
  42. 42.
    J. Cen, F. Correa, A. Fring, J. Phys. A 50, 435201 (2017)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of the PunjabLahorePakistan

Personalised recommendations