Advertisement

Wave propagation in functionally graded cylindrical nanoshells based on nonlocal Flügge shell theory

  • Yan Qing WangEmail author
  • Chen Liang
  • Jean W. Zu
Regular Article
  • 34 Downloads

Abstract.

In the present work, wave propagation characteristics of circular cylindrical nanoshells made of functionally graded materials are investigated. Material properties of the nanoshells are graded in the thickness direction according to the power-law distribution. The Flügge shell theory together with the nonlocal elasticity theory is employed to model the present system. The wave dispersion relations with respect to the wave number in the longitudinal and circumferential directions are derived. In addition, a parametric study is carried out to highlight the influences of the power-law exponent, the wave number, the nonlocal parameter and the radius-to-thickness ratio. The results indicate that these parameters have a significant effect on the wave propagation characteristics of functionally graded material (FGM) cylindrical nanoshells.

References

  1. 1.
    M. Koizumi, Composites Part B 28, 1 (1997)CrossRefGoogle Scholar
  2. 2.
    G.L. She, K.M. Yan, Y.L. Zhang, H.B. Liu, Y.R. Ren, Eur. Phys. J. Plus 133, 368 (2018)CrossRefGoogle Scholar
  3. 3.
    Y.Q. Wang, J.W. Zu, Compos. Struct. 164, 130 (2017)CrossRefGoogle Scholar
  4. 4.
    S.C. Pradhan, C.T. Loy, K.Y. Lam, J.N. Reddy, Appl. Acoust. 61, 111 (2000)CrossRefGoogle Scholar
  5. 5.
    Y.Q. Wang, Acta Astronaut. 143, 263 (2018)ADSCrossRefGoogle Scholar
  6. 6.
    Y.Q. Wang, J.W. Zu, Aerospace Sci. Technol. 69, 550 (2017)CrossRefGoogle Scholar
  7. 7.
    H. Aminipour, M. Janghorban, L. Li, Compos. Struct. 190, 91 (2018)CrossRefGoogle Scholar
  8. 8.
    W. Zhang, Y.X. Hao, J. Yang, Compos. Struct. 94, 1075 (2012)CrossRefGoogle Scholar
  9. 9.
    H. Huang, Q. Han, Eur. J. Mech. A/Solids 29, 42 (2010)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    C.M. Craciunescu, M. Wuttig, J. Optoelectron. Adv. Mater. 5, 139 (2003)Google Scholar
  11. 11.
    Y. Fu, H. Du, W. Huang, S. Zhang, M. Hu, Sensors Actuat. A 112, 395 (2004)CrossRefGoogle Scholar
  12. 12.
    Z. Lee, C. Ophus, L.M. Fischer, N. Nelson-Fitzpatrick, K.L. Westra, S. Evoy, V. Radmilovic, U. Dahmen, D. Mitlin, Nanotechnology 17, 3063 (2006)CrossRefGoogle Scholar
  13. 13.
    X. Li, B. Bhushan, K. Takashima, C.W. Baek, Y.K. Kim, Ultramicroscopy 97, 481 (2003)CrossRefGoogle Scholar
  14. 14.
    Y. Fu, H. Du, S. Zhang, Mater. Lett. 57, 2995 (2003)CrossRefGoogle Scholar
  15. 15.
    H.M. Sedighi, F. Daneshmand, M. Abadyan, Compos. Struct. 132, 545 (2015)CrossRefGoogle Scholar
  16. 16.
    A. Witvrouw, A. Mehta, Mater. Sci. Forum 492--493, 255 (2005)CrossRefGoogle Scholar
  17. 17.
    X.L. Jia, J. Yang, S. Kitipornchai, C.W. Lim, Appl. Math. Model. 36, 1875 (2012)MathSciNetCrossRefGoogle Scholar
  18. 18.
    M. Arefi, A.M. Zenkour, Mod. Phys. Lett. B 32, 1 (2018)CrossRefGoogle Scholar
  19. 19.
    K. Mohammadi, M. Mahinzare, K. Ghorbani, M. Ghadiri, Microsyst. Technol. 24, 1133 (2017)CrossRefGoogle Scholar
  20. 20.
    C.S. Zhu, X.Q. Fang, J.X. Liu, Int. J. Mech. Sci. 133, 662 (2017)CrossRefGoogle Scholar
  21. 21.
    S. Sahmani, M.M. Aghdam, Int. J. Mech. Sci. 131--132, 95 (2017)CrossRefGoogle Scholar
  22. 22.
    S. Sahmani, M.M. Aghdam, Compos. Struct. 178, 97 (2017)CrossRefGoogle Scholar
  23. 23.
    J. Sun, C.W. Lim, Z. Zhou, X. Xu, W. Sun, J. Appl. Phys. 119, 214303 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    M.H. Shojaeefard, H. Saeidi Googarchin, M. Mahinzare, M. Adibi, J. Intell. Mater. Syst. Struct. 29, 2344 (2018)CrossRefGoogle Scholar
  25. 25.
    H. Zeighampour, M. Shojaeian, J. Braz. Soc. Mech. Sci. Eng. 39, 2789 (2017)CrossRefGoogle Scholar
  26. 26.
    X.Q. Fang, C.S. Zhu, J.X. Liu, J. Zhao, Mater. Res. Express 5, 45017 (2018)CrossRefGoogle Scholar
  27. 27.
    Y.G. Hu, K.M. Liew, Q. Wang, X.Q. He, B.I. Yakobson, J. Mech. Phys. Solids 56, 3475 (2008)ADSCrossRefGoogle Scholar
  28. 28.
    H. Zeighampour, Y.T. Beni, I. Karimipour, Microfluid. Nanofluid. 21, 1 (2017)CrossRefGoogle Scholar
  29. 29.
    H. Zeighampour, Y. Tadi Beni, M. Botshekanan Dehkordi, Thin-Walled Struct. 122, 378 (2018)CrossRefGoogle Scholar
  30. 30.
    L.H. Ma, L.L. Ke, J.N. Reddy, J. Yang, S. Kitipornchai, Y.S. Wang, Compos. Struct. 199, 10 (2018)CrossRefGoogle Scholar
  31. 31.
    Q. Wang, V.K. Varadan, Smart Mater. Struct. 16, 178 (2007)ADSCrossRefGoogle Scholar
  32. 32.
    Y.S. Touloukian, Thermophysical Properties of High Temperature Solid Materials (Macmillian, New York, 1967)Google Scholar
  33. 33.
    W. Zhang, J. Yang, Y.X. Hao, Nonlinear Dyn. 59, 619 (2010)CrossRefGoogle Scholar
  34. 34.
    Y.Q. Wang, Y.H. Wan, J.W. Zu, Thin-Walled Struct. 135, 537 (2019)CrossRefGoogle Scholar
  35. 35.
    A.C. Eringen, Nonlocal Polar Field Models (Academic, New York, 1976)Google Scholar
  36. 36.
    A.C. Eringen, J. Appl. Phys. 54, 4703 (1983)ADSCrossRefGoogle Scholar
  37. 37.
    W. Flügge, Stresses in Shells (1960)Google Scholar
  38. 38.
    J.N. Reddy, C.D. Chin, J. Therm. Stresses 21, 593 (1998)CrossRefGoogle Scholar
  39. 39.
    Y. Tadi Beni, F. Mehralian, H. Razavi, Compos. Struct. 120, 65 (2015)CrossRefGoogle Scholar
  40. 40.
    F. Mehralian, Y.T. Beni, Composites Part B 94, 11 (2016)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mechanics, College of SciencesNortheastern UniversityShenyangChina
  2. 2.Key Laboratory of Ministry of Education on Safe Mining of Deep Metal MinesNortheastern UniversityShenyangChina
  3. 3.Schaefer School of Engineering and ScienceStevens Institute of TechnologyHobokenUSA

Personalised recommendations