Advertisement

Sensitivity analysis and optimization of MHD forced convection of a Cu-water nanofluid flow past a wedge

  • Seyed Masoud VahediEmail author
  • Ahmad Hajatzadeh Pordanjani
  • Afrasiab Raisi
  • Ali J. Chamkha
Regular Article
  • 29 Downloads

Abstract.

The effect of a wedge angle on the MHD laminar momentum and thermal boundary layer decelerating forced flow of a water-Cu nanofluid flow over a constant temperature wedge is investigated numerically for different nanoparticle volume fractions. The thermal conductivity and viscosity of the nanofluid are computed by considering the Brownian motion of the particles. The momentum and energy equations are solved by the Keller-Box method. The averaged friction coefficient and the Nusselt number are analyzed to explore boundary layer and heat transfer behaviours. Two regression models are obtained by using the response surface methodology for various magnetic parameters (\(0.5\le M\le 2.5\)), wedge angles (\( 90^{\circ}\le \beta\le 180^{\circ}\)) and nanoparticle volume fractions (\( 0.01\le \varphi\le 0.07\)). Then, a sensitivity analysis is carried out to gain further insight into the impact of the factors on the problem. Finally, an optimization process is conducted in order to determine the maximum heat transfer rate and the minimum surface friction. The obtained results show that both the magnetic parameter and the wedge angle decrease the thicknesses of the hydrodynamic and thermal boundary layers, so that the averaged surface friction and the Nusselt number reduce. Surprisingly, adding nanoparticles is found to have a decreasing impact on the averaged Nusselt number by enlarging the thermal boundary layer thickness at high magnetic strength. The sensitivity analysis outcomes reveal that M, \( \beta\), and \( \varphi\) have increasing effects on the surface friction. Also, the sensitivity of \( \overline{Nu}\) to the wedge angle is found to be independent of the magnetic parameter. The optimum condition occurs when M = 0.62, \( \beta=166.71^{\circ}\), and \( \varphi\) = 0.052, wherein \( \overline{Nu}\) = 1.176 and \( \overline{C}_{f}=3.2601\), with a maximum error of 0.33%.

References

  1. 1.
    L. Prandtl, Motion of fluids with very little viscosity (1928)Google Scholar
  2. 2.
    A. Ababaei, A.A. Arani, A. Aghaei, J. Appl. Fluid Mech. 10, 1759 (2017)CrossRefGoogle Scholar
  3. 3.
    J.D. Anderson, Phys. Today 58, 42 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    M. Shen, Y. Dai, H. Chen, Heat Transf. Asian Res. 47, 389 (2018)CrossRefGoogle Scholar
  5. 5.
    Y. Kim, A. Al-Abadi, A. Delgado, in Flight Physics-Models, Techniques and Technologies, edited by Konstantin Volkov (InTech, 2018)Google Scholar
  6. 6.
    A.H. Pordanjani, S.M. Vahedi, F. Rikhtegar, S. Wongwises, J. Therm. Anal. Calorim. 135, 1031 (2019)CrossRefGoogle Scholar
  7. 7.
    F. Selimefendigil, H.F. Öztop, Adv. Powder Technol. 26, 1663 (2015)CrossRefGoogle Scholar
  8. 8.
    F. Selimefendigil, H.F. Öztop, Int. J. Mech. Sci. 118, 113 (2016)CrossRefGoogle Scholar
  9. 9.
    F. Selimefendigil, H.F. Öztop, A.J. Chamkha, Eur. J. Mech.-B/Fluids 61, 77 (2017)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    K.S. Dehkordi, M.A. Fazilati, A. Hajatzadeh, Appl. Therm. Eng. 87, 56 (2015)CrossRefGoogle Scholar
  11. 11.
    F. Selimefendigil, H.F. Öztop, Int. J. Heat Mass Transfer 129, 265 (2019)CrossRefGoogle Scholar
  12. 12.
    S.U. Choi, J.A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles, No. ANL/MSD/CP--84938, CONF-951135--29 (Argonne National Lab., IL, 1995)Google Scholar
  13. 13.
    E. Abu-Nada, Int. J. Heat Fluid Flow 29, 242 (2008)CrossRefGoogle Scholar
  14. 14.
    C.S.K. Raju, N. Sandeep, Eur. Phys. J. Plus 131, 405 (2016)CrossRefGoogle Scholar
  15. 15.
    E. Abu-Nada, Int. Commun. Heat Mass Transf. 85, 1 (2017)CrossRefGoogle Scholar
  16. 16.
    A.M. Rashad, A.J. Chamkha, M. Ismael, T. Salah, J. Heat Transf. 140, 072502 (2018)CrossRefGoogle Scholar
  17. 17.
    A. Asadi, M. Asadi, A. Rezaniakolaei, L.A. Rosendahl, M. Afrand, S. Wongwises, Int. J. Heat Mass Transfer 117, 474 (2018)CrossRefGoogle Scholar
  18. 18.
    M. Hemmat Esfe, A. Akbar Abbasian Arani, A. Aghaie, S. Wongwises, Curr. Nanosci. 13, 311 (2017)ADSCrossRefGoogle Scholar
  19. 19.
    F. Selimefendigil, H.F. Öztop, J. Taiwan Inst. Chem. Eng. 70, 168 (2017)CrossRefGoogle Scholar
  20. 20.
    S.K. Das, S.U. Choi, H.E. Patel, Heat Transf. Eng. 27, 3 (2006)ADSCrossRefGoogle Scholar
  21. 21.
    J. Buongiorno, J. Heat Transfer 128, 240 (2006)CrossRefGoogle Scholar
  22. 22.
    W. Daungthongsuk, S. Wongwises, Renew. Sustain. Energy Rev. 11, 797 (2007)CrossRefGoogle Scholar
  23. 23.
    X.Q. Wang, A.S. Mujumdar, Int. J. Therm. Sci. 46, 1 (2007)CrossRefGoogle Scholar
  24. 24.
    S. Kakaç, A. Pramuanjaroenkij, Int. J. Heat Mass Transfer 52, 3187 (2009)CrossRefGoogle Scholar
  25. 25.
    A.S. Dalkilic, N. Kayaci, A. Celen, M. Tabatabaei, O. Yildiz, W. Daungthongsuk, S. Wongwises, Curr. Nanosci. 8, 949 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    R. Saidur, K.Y. Leong, H. Mohammad, Renew. Sustain. Energy Rev. 15, 1646 (2011)CrossRefGoogle Scholar
  27. 27.
    P.K. Kameswaran, M. Narayana, S. Shaw, P. Sibanda, Eur. Phys. J. Plus 129, 154 (2014)CrossRefGoogle Scholar
  28. 28.
    A. Raisi, B. Ghasemi, S.M. Aminossadati, Numer. Heat Transf. Part A: Appl. 59, 114 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    M.A.A. Hamad, I. Pop, A.M. Ismail, Nonlinear Anal.: Real World Appl. 12, 1338 (2011)MathSciNetCrossRefGoogle Scholar
  30. 30.
    A.H. Pordanjani, A. Jahanbakhshi, A.A. Nadooshan, M. Afrand, Int. J. Heat Mass Transfer 121, 565 (2018)CrossRefGoogle Scholar
  31. 31.
    R. Kandasamy, K. Periasamy, K.S. Prabhu, Int. J. Heat Mass Transfer 48, 1388 (2005)CrossRefGoogle Scholar
  32. 32.
    K. Ahmad, Z. Hanouf, A. Ishak, Eur. Phys. J. Plus 132, 87 (2017)CrossRefGoogle Scholar
  33. 33.
    C.S.K. Raju, N. Sandeep, Eur. Phys. J. Plus 131, 267 (2016)CrossRefGoogle Scholar
  34. 34.
    R. Kandasamy, I. Muhaimin, A.B. Khamis, Heat Mass Transf. 45, 703 (2009)ADSCrossRefGoogle Scholar
  35. 35.
    R. Kandasamy, I. Muhaimin, A.B. Khamis, R. bin Roslan, Int. J. Therm. Sci. 65, 196 (2013)CrossRefGoogle Scholar
  36. 36.
    V.M. Falkner, S.W. Skan, Some approximate solutions of the boundary layer equations (HM Stationery Office, 1930)Google Scholar
  37. 37.
    H. Schlichting, K. Gersten, E. Krause, H. Oertel, K. Mayes, Boundary-layer theory, Vol. 7 (McGraw-hill, New York, 1955)Google Scholar
  38. 38.
    A. Ishak, Sains Malays. 40, 391 (2011)Google Scholar
  39. 39.
    V.J. Rossow, On flow of electrically conducting fluids over a flat plate in the presence of a transverse magnetic field (1958)Google Scholar
  40. 40.
    R. Haq, S. Nadeem, Z. Khan, T. Okedayo, Open Phys. 12, 862 (2014)ADSCrossRefGoogle Scholar
  41. 41.
    O.D. Makinde, A. Aziz, Int. J. Therm. Sci. 50, 1326 (2011)CrossRefGoogle Scholar
  42. 42.
    N.A. Yacob, A. Ishak, R. Nazar, I. Pop, Int. Commun. Heat Mass Transfer 38, 149 (2011)CrossRefGoogle Scholar
  43. 43.
    A.J. Chamkha, S. Abbasbandy, A.M. Rashad, K. Vajravelu, Transp. Porous Media 91, 261 (2012)MathSciNetCrossRefGoogle Scholar
  44. 44.
    R.S.R. Gorla, A.J. Chamkha, A.M. Rashad, Nanoscale Res. Lett. 6, 207 (2011)ADSCrossRefGoogle Scholar
  45. 45.
    K.V. Prasad, P.S. Datti, K. Vajravelu, J. King Saud Univ.-Sci. 25, 313 (2013)CrossRefGoogle Scholar
  46. 46.
    D. Pal, G. Mandal, Powder Technol. 279, 61 (2015)CrossRefGoogle Scholar
  47. 47.
    R. Ahmad, W.A. Khan, Heat Transf. Asian Res. 43, 17 (2014)CrossRefGoogle Scholar
  48. 48.
    M. Ganapathirao, R. Ravindran, I. Pop, Int. J. Heat Mass Transfer 67, 1054 (2013)CrossRefGoogle Scholar
  49. 49.
    U. Khan, N. Ahmed, S.T. Mohyud-Din, B. Bin-Mohsin, Neural Comput. Appl. 28, 2041 (2017)CrossRefGoogle Scholar
  50. 50.
    R.M. Kasmani, S. Sivasankaran, M. Bhuvaneswari, Z. Siri, J. Appl. Field Mech. 9, 379 (2016)CrossRefGoogle Scholar
  51. 51.
    R.M. Kasmani, I. Muhaimin, R. Kandasamy, J. Appl. Mech. Tech. Phys. 54, 377 (2013)ADSCrossRefGoogle Scholar
  52. 52.
    S. Hassani, R. Saidur, S. Mekhilef, A. Hepbasli, Int. J. Heat Mass Transf. 90, 121 (2015)CrossRefGoogle Scholar
  53. 53.
    C.S.K. Raju, N. Sandeep, V. Sugunamma, M.J. Babu, J.R. Reddy, Eng. Sci. Technol. Int. J. 19, 45 (2016)CrossRefGoogle Scholar
  54. 54.
    D. Srinivasacharya, U. Mendu, K. Venumadhav, Procedia Eng. 127, 1064 (2015)CrossRefGoogle Scholar
  55. 55.
    A.A. Afify, M.A.A. Bazid, J. Comput. Theor. Nanosci. 11, 1844 (2014)CrossRefGoogle Scholar
  56. 56.
    F.A. Salama, Therm. Sci. 20, 437 (2016)CrossRefGoogle Scholar
  57. 57.
    A.G. Hansen, Similarity analyses of boundary value problems in engineering (Prentice-Hall, 1964)Google Scholar
  58. 58.
    L.C. Burmeister, Convective Heat Transfer (John Wiley & Sons, 1993)Google Scholar
  59. 59.
    H.C. Brinkman, J. Chem. Phys. 20, 571 (1952)ADSCrossRefGoogle Scholar
  60. 60.
    R.S. Vajjha, D.K. Das, Int. J. Heat Mass Transfer 52, 4675 (2009)CrossRefGoogle Scholar
  61. 61.
    K.A. Hoffmann, S.T. Chiang, Computational Fluid Dynamics, Vol. I (Engineering Education System, Wichita, Kan, USA, 2000)Google Scholar
  62. 62.
    W. Kays, M. Crawford, a textbook of Convective Heat and Mass Transfer (McGraw-Hill, New York, 1993)Google Scholar
  63. 63.
    N.A. Yacob, A. Ishak, I. Pop, Int. J. Therm. Sci. 50, 133 (2011)CrossRefGoogle Scholar
  64. 64.
    S. Rashidi, M. Bovand, J.A. Esfahani, Energy Convers. Manag. 103, 726 (2015)CrossRefGoogle Scholar
  65. 65.
    M. Rahimi-Gorji, O. Pourmehran, M. Hatami, D.D. Ganji, Eur. Phys. J. Plus 130, 22 (2015)CrossRefGoogle Scholar
  66. 66.
    S. Rashidi, M. Bovand, J.A. Esfahani, Energy 88, 385 (2015)CrossRefGoogle Scholar
  67. 67.
    A. Ghorbanian, M. Tahari, M. Hatami, Eur. Phys. J. Plus 132, 278 (2017)CrossRefGoogle Scholar
  68. 68.
    A.A. Afify, M.A. El-Aziz, Pramana 88, 31 (2017)ADSCrossRefGoogle Scholar
  69. 69.
    M. Uddin, W.A. Khan, A.M. Ismail, Indian J. Phys. 90, 627 (2016)ADSCrossRefGoogle Scholar
  70. 70.
    S. Vahedi, A. Zare Ghadi, M. Valipour, J. Mech. 84, 695 (2018)CrossRefGoogle Scholar
  71. 71.
    R.H. Myers, D.C. Montgomery, C.M. Anderson-Cook, Response Surface Methodology: Process and Product Optimization Using Designed Experiments, in Wiley Series in Probability and Statistics (Wiley, 1995)Google Scholar

Copyright information

© Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringSemnan UniversitySemnanIran
  2. 2.Gas Refining Technology Group, Gas Research DivisionResearch Institute of Petroleum Industry (RIPI)TehranIran
  3. 3.Department of Mechanical EngineeringShahrekord UniversityShahrekordIran
  4. 4.Mechanical Engineering Department, Prince Mohammad Endowment for Nanoscience and TechnologyPrince Mohammad Bin Fahd UniversityAl-KhobarSaudi Arabia
  5. 5.RAK Research and Innovation CenterAmerican University of Ras Al KhaimahRas Al KhaimahUnited Arab Emirates

Personalised recommendations