Advertisement

Effect of variable liquid properties on peristaltic flow of a Rabinowitsch fluid in an inclined convective porous channel

  • Hanumesh Vaidya
  • C. Rajashekhar
  • G. ManjunathaEmail author
  • K. V. Prasad
Regular Article

Abstract.

The peristaltic mechanism of a Rabinowitsch liquid in an inclined porous channel is reported in the presence of variable liquid properties. The convective conditions at the boundary walls are considered. The governing nonlinear equations are rendered dimensionless and solved with the help of the perturbation technique. The analytical solutions for velocity, temperature and streamlines are obtained and analysed graphically. Also, the pumping characteristics are discussed, and MATLAB programming has been used to tabulate the pumping efficiency. Further, the impact of relevant parameters of interest on physiological quantities are analysed for dilatant, Newtonian and pseudoplastic fluid models. The obtained results show the presence of variable liquid properties and convective conditions have a significant role in understanding the rheological properties of shear thinning, viscous and shear thickening fluid models. The investigation further reveals that an increase in the value of porous parameters diminishes the occurrence of the trapping phenomenon for Newtonian and dilatant fluid models. On the other hand, opposite behaviour is noticed for pseudoplastic fluids.

References

  1. 1.
    A.H. Shapiro, M.Y. Jaffrin, S.L. Weinberg, J. Fluid Mech. 37, 799 (1969)ADSCrossRefGoogle Scholar
  2. 2.
    K. Vajravelu, S. Sreenadh, V.R. Babu, Int. J. Nonlinear Mech. 40, 83 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    N.S. Akbar, M. Reza, R. Ellahi, Eur. Phys. J. Plus 129, 155 (2014)CrossRefGoogle Scholar
  4. 4.
    C. Rajashekhar, G. Manjunatha, K.V. Prasad, B.B. Divya, H. Vaidya, Cogent Eng. 5, 1495592 (2018)CrossRefGoogle Scholar
  5. 5.
    E.F. El Shehawey, S.Z.A. Husseny, Acta Mech. 143, 165 (2000)CrossRefGoogle Scholar
  6. 6.
    S. Nadeem, S. Akram, Transp. Porous Media 56, 598 (2011)Google Scholar
  7. 7.
    Kh.S. Mekheimer, A.M. Salem, A.Z. Zaher, J. Egypt. Math. Soc. 22, 143 (2014)CrossRefGoogle Scholar
  8. 8.
    K. Vajravelu, S. Sreenadh, P. Lakshminarayana, G. Sucharitha, M.M. Rashidi, J. Appl. Fluid Mech. 9, 1615 (2016)CrossRefGoogle Scholar
  9. 9.
    G. Manjunatha, C. Rajashekhar, J. Appl. Fluid Mech. Fluid Therm. Sci. 43, 67 (2018)Google Scholar
  10. 10.
    A. Alsaedi, N. Batool, H. Yasmin, T. Hayat, Appl. Bionics Biomech. 10, 197 (2013)CrossRefGoogle Scholar
  11. 11.
    F.M. Abbasi, T. Hayat, B. Ahmad, J. Cent. South Univ. 21, 1411 (2014)CrossRefGoogle Scholar
  12. 12.
    T. Hayat, M. Rafiq, A. Alsaedi, B. Ahmad, Eur. Phys. J. Plus 129, 225 (2014)CrossRefGoogle Scholar
  13. 13.
    S. Nooren, Eur. Phys. J. Plus 129, 33 (2014)CrossRefGoogle Scholar
  14. 14.
    T. Hayat, S. Farooq, B. Ahmad, A. Alsaedi, AIP Adv. 6, 045302 (2016)ADSCrossRefGoogle Scholar
  15. 15.
    K. Ramesh, Comput. Methods Progr. Biomed. 135, I (2016)CrossRefGoogle Scholar
  16. 16.
    F. Mebarek Oudina, R. Bessaih, J. Appl. Fluid Mech. 9, 1655 (2016)CrossRefGoogle Scholar
  17. 17.
    A. Wakif, Z. Boulahia, R. Sehaqui, J. Nanofluids 6, 136 (2017)CrossRefGoogle Scholar
  18. 18.
    F.M. Oudina, O.D. Makinde, Defect Diffus. Forum 387, 417 (2018)CrossRefGoogle Scholar
  19. 19.
    A. Wakif, Z. Boulahia, R. Sehaqui, Results Phys. 9, 1438 (2018)ADSCrossRefGoogle Scholar
  20. 20.
    A. Wakif, Z. Boulahia, F. Ali, M.R. Eid, R. Sehaqui, Int. J. Appl. Comput. Math. 4, 81 (2018)CrossRefGoogle Scholar
  21. 21.
    A. Wakif, Z. Boulahia, S.R. Mishra, M.M. Rashidi, R. Sehaqui, Eur. Phys. J. Plus 133, 181 (2018)CrossRefGoogle Scholar
  22. 22.
    T. Hayat, N. Aslam, M.I. Khan, A. Alsaedi, Microsyst. Technol. 25, 609 (2019)CrossRefGoogle Scholar
  23. 23.
    H. Vaidya, G. Manjunatha, C. Rajashekhar, K.V. Prasad, Multidiscip. Model. Mater. Struct. 14, 940 (2018)CrossRefGoogle Scholar
  24. 24.
    F.M. Oudina, Heat Transf. - Asian Res. 48, 135 (2019)CrossRefGoogle Scholar
  25. 25.
    Z. Boulahia, A. Wakif, R. Sehaqui, Front. Heat Mass Transf. 11, 11 (2019)Google Scholar
  26. 26.
    T. Hayat, F.M. Abbasi, B. Ahmad, A. Alsaedi, Sains Malays. 43, 1583 (2014)Google Scholar
  27. 27.
    Q. Hussain, S. Asghar, T. Hayat, A. Alsaedi, Int. J. Biomath. 9, 1650029 (2016)MathSciNetCrossRefGoogle Scholar
  28. 28.
    K. Vajravelu, K.V. Prasad, Chiu-On Ng, H. Vaidya, Int. J. Mech. Mater. Eng. 12, 9 (2017)CrossRefGoogle Scholar
  29. 29.
    K.V. Prasad, H. Vaidya, K. Vajravelu, Appl. Math. Nonlinear Sci. 2, 351 (2017)MathSciNetCrossRefGoogle Scholar
  30. 30.
    K.V. Prasad, K. Vajravelu, H. Vaidya, N.Z. Basha, V. Umesh, Ain Shams Eng. J. 9, 1763 (2018)CrossRefGoogle Scholar
  31. 31.
    T. Hayat, S. Farooq, B. Ahmad, A. Alsaedi, J. Mol. Liq. 263, 258 (2018)CrossRefGoogle Scholar
  32. 32.
    C. Rajashekhar, G. Manjunatha, H. Vaidya, B.B. Baliga, K.V. Prasad, Front. Heat Mass Transf. 11, 35 (2018)Google Scholar
  33. 33.
    S. Wada, H. Hayashi, Bull. JSME 69, 268 (1971)CrossRefGoogle Scholar
  34. 34.
    N.S. Akbar, S. Nadeem, Z. Naturforsch. 69a, 473 (2014)ADSGoogle Scholar
  35. 35.
    U.P. Singh, A. Medhavi, R.S. Gupta, S.S. Bhatt, Z. Naturforsch. 72, 601 (2017)ADSGoogle Scholar
  36. 36.
    H. Sadaf, S. Nadeem, J. Bionic Eng. 14, 182 (2017)CrossRefGoogle Scholar
  37. 37.
    R. Saravana, K. Vajravelu, S. Sreenadh, Z. Naturforsch. 73, 833 (2018)ADSCrossRefGoogle Scholar
  38. 38.
    H. Vaidya, C. Rajashekhar, G. Manjunatha, K.V. Prasad, J. Nanofluids 8, 970 (2019)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsSSA Government First Grade College (Autonomous)BallariIndia
  2. 2.Department of Mathematics, Manipal Institute of TechnologyManipal Academy of Higher EducationManipalIndia
  3. 3.Department of MathematicsVijayanagara Srikrishnadevaraya UniversityBallariIndia

Personalised recommendations