Cosmological constant as a fundamental constant

  • V. G. GurzadyanEmail author
  • A. Stepanian
Regular Article
Part of the following topical collections:
  1. Focus Point on Tests of General Relativity and Alternative Gravity Theories


We consider further consequences of the recently (Eur. Phys. J. C 78, 632 (2018)) revealed role of cosmological constant \( \Lambda\) as of a physical constant, along with the gravitational one to define the gravity, i.e. the General Relativity and its low-energy limit. We now show how \( \Lambda\) -constant affects the basic relations involving the Planck units and leads to emergence of a new dimensionless quantity (constant) which can be given cosmological information content. Within Conformal Cyclic Cosmology, this approach implies the possibility of rescaling of physical constants from one aeon to another; the rescaling has to satisfy a condition involving \( \Lambda\) and admitting group symmetry. The emerged dimensionless information constant enables to reduce the dynamics of the universe to an algorithm of discrete steps of information increase.


  1. 1.
    A. Einstein, Königlich Preussische Akademic der Wissenschaften (1917) p. 142Google Scholar
  2. 2.
    A. Einstein, Z. Phys. 19, 165 (1918)Google Scholar
  3. 3.
    V.G. Gurzadyan, A. Stepanian, Eur. Phys. J. C 78, 632 (2018)CrossRefGoogle Scholar
  4. 4.
    V.G. Gurzadyan, Observatory 105, 42 (1985)Google Scholar
  5. 5.
    V.G. Gurzadyan, Eur. Phys. J. Plus 134, 14 (2019)CrossRefGoogle Scholar
  6. 6.
    J.-P. Uzan, Living Rev. Relativ. 14, 2 (2011)CrossRefGoogle Scholar
  7. 7.
    M. Planck, Ann. Phys. (Berlin) 1, 69 (1900)CrossRefGoogle Scholar
  8. 8.
    R. Penrose, Cycles of Time: An Extraordinary New View of the Universe (Bodley Head, London, 2010)Google Scholar
  9. 9.
    V.G. Gurzadyan, R. Penrose, Eur. Phys. J. Plus 128, 22 (2013)CrossRefGoogle Scholar
  10. 10.
    J.D. Bekenstein, Phys. Rev. D 7, 2333 (1973)MathSciNetCrossRefGoogle Scholar
  11. 11.
    G.W. Gibbons, S.W. Hawking, Phys. Rev. D 15, 2738 (1977)MathSciNetCrossRefGoogle Scholar
  12. 12.
    J.D. Bekenstein, Phys. Rev. D 23, 287 (1981)MathSciNetCrossRefGoogle Scholar
  13. 13.
    V.G. Gurzadyan, R. Penrose, Eur. Phys. J. Plus 131, 11 (2016)CrossRefGoogle Scholar
  14. 14.
    V.G. Gurzadyan, A. Stepanian, Eur. Phys. J. C 78, 869 (2018)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Center for Cosmology and AstrophysicsAlikhanian National Laboratory and Yerevan State UniversityYerevanArmenia
  2. 2.SIASapienza Università di RomaRomeItaly

Personalised recommendations