Advertisement

A coupled longitudinal-transverse nonlinear NSGT model for CNTs incorporating internal energy loss

  • Mergen H. Ghayesh
  • Hamed Farokhi
  • Ali FarajpourEmail author
Regular Article
  • 40 Downloads

Abstract.

The aim of the present study is to comprehensively analyse scale effects on the mechanical characteristics of carbon nanotubes (CNTs) with viscoelastic properties. A scale-dependent coupled longitudinal-transverse nonlinear formulation is presented for this aim. The roles of both the longitudinal and transverse motions as well as the viscosity effect due to the internal loss of the total energy are taken into account. The influence of large deformations due to the geometric nonlinearity is also taken into account. The nonlocal strain gradient theory (NSGT) is applied so as to describe scale effects on the mechanical characteristics of viscoelastic CNTs. Compared to the classical nonlocal theory, the NSGT better estimates scale effects since it is able to describe both the stiffness-hardening and -softening behaviours. The Kelvin-Voigt approach is used to capture the influence of the internal energy loss. Application of the NSGT together with the Hamilton principle yields the energy potential, the external work and the coupled longitudinal-transverse equations of the CNT. To determine an accurate numerical solution, the Galerkin scheme of discretisation and a continuation approach are finally utilised. The role of different parameters of the nanosystem in the nonlinear coupled mechanics of viscoelastic CNTs is discussed.

References

  1. 1.
    J. Suhr, N. Koratkar, P. Keblinski, P. Ajayan, Nat. Mater. 4, 134 (2005)ADSCrossRefGoogle Scholar
  2. 2.
    A. Setoodeh, P. Malekzadeh, A. Vosoughi, Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci. 226, 1896 (2012)CrossRefGoogle Scholar
  3. 3.
    A.A. Beni, P. Malekzadeh, Compos. Struct. 94, 3215 (2012)CrossRefGoogle Scholar
  4. 4.
    P. Malekzadeh, S. Mohebpour, Y. Heydarpour, Acta Mech. 223, 1341 (2012)MathSciNetCrossRefGoogle Scholar
  5. 5.
    P. Malekzadeh, M.G. Haghighi, M. Shojaee, Thin-Walled Struct. 78, 48 (2014)CrossRefGoogle Scholar
  6. 6.
    P. Malekzadeh, M. Shojaee, Compos. Struct. 95, 443 (2013)CrossRefGoogle Scholar
  7. 7.
    S.R. Asemi, A. Farajpour, IET Micro Nano Lett. 9, 280 (2014)CrossRefGoogle Scholar
  8. 8.
    M. Aydogdu, I. Elishakoff, Mech. Res. Commun. 57, 90 (2014)CrossRefGoogle Scholar
  9. 9.
    S. Iijima, Nature 354, 56 (1991)ADSCrossRefGoogle Scholar
  10. 10.
    M. Kamali, M. Shamsi, A. Saidi, Eur. Phys. J. Plus 133, 110 (2018)CrossRefGoogle Scholar
  11. 11.
    F. Ebrahimi, M.R. Barati, P. Haghi, Eur. Phys. J. Plus 131, 383 (2016)CrossRefGoogle Scholar
  12. 12.
    A. Hadi, M.Z. Nejad, M. Hosseini, Int. J. Eng. Sci. 128, 12 (2018)CrossRefGoogle Scholar
  13. 13.
    R. Omidian, Y.T. Beni, F. Mehralian, Eur. Phys. J. Plus 132, 481 (2017)CrossRefGoogle Scholar
  14. 14.
    M.M. Adeli, A. Hadi, M. Hosseini, H.H. Gorgani, Eur. Phys. J. Plus 132, 393 (2017)ADSCrossRefGoogle Scholar
  15. 15.
    M.F. Oskouie, R. Ansari, H. Rouhi, Eur. Phys. J. Plus 133, 336 (2018)CrossRefGoogle Scholar
  16. 16.
    M. Farajpour, A. Shahidi, F. Tabataba'i-Nasab, A. Farajpour, Eur. Phys. J. Plus 133, 219 (2018)CrossRefGoogle Scholar
  17. 17.
    A. Setoodeh, M. Khosrownejad, P. Malekzadeh, Physica E 43, 1730 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    M. Aydogdu, Int. J. Eng. Sci. 56, 17 (2012)CrossRefGoogle Scholar
  19. 19.
    M.H. Ghayesh, H. Farokhi, G. Alici, Int. J. Eng. Sci. 100, 99 (2016)CrossRefGoogle Scholar
  20. 20.
    P. Valipour, S. Ghasemi, M.R. Khosravani, D. Ganji, J. Theor. Appl. Phys. 10, 211 (2016)ADSCrossRefGoogle Scholar
  21. 21.
    G.-L. She, F.-G. Yuan, Y.-R. Ren, H.-B. Liu, W.-S. Xiao, Compos. Struct. 203, 614 (2018)CrossRefGoogle Scholar
  22. 22.
    M.R. Khosravani, K. Weinberg, Compos. Struct. 197, 80 (2018)CrossRefGoogle Scholar
  23. 23.
    M.H. Ghayesh, H. Farokhi, M. Amabili, Int. J. Eng. Sci. 71, 137 (2013)CrossRefGoogle Scholar
  24. 24.
    H. Farokhi, M.H. Ghayesh, Int. J. Eng. Sci. 123, 197 (2018)CrossRefGoogle Scholar
  25. 25.
    M.H. Ghayesh, M. Amabili, H. Farokhi, Int. J. Eng. Sci. 63, 52 (2013)CrossRefGoogle Scholar
  26. 26.
    A. Gholipour, H. Farokhi, M.H. Ghayesh, Nonlinear Dyn. 79, 1771 (2015)CrossRefGoogle Scholar
  27. 27.
    M. Aydogdu, S. Filiz, Physica E 43, 1229 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    C. Shu, Differential Quadrature and its Application in Engineering (Springer Science & Business Media, 2012)Google Scholar
  29. 29.
    Y. Lei, S. Adhikari, M. Friswell, Int. J. Eng. Sci. 66, 1 (2013)CrossRefGoogle Scholar
  30. 30.
    R. Bahaadini, M. Hosseini, Comput. Mater. Sci. 114, 151 (2016)CrossRefGoogle Scholar
  31. 31.
    Y. Zhang, M. Pang, L. Fan, Phys. Lett. A 380, 2294 (2016)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    D. Karličić, T. Murmu, M. Cajić, P. Kozić, S. Adhikari, J. Appl. Phys. 115, 234303 (2014)ADSCrossRefGoogle Scholar
  33. 33.
    M. Mohammadimehr, B.R. Navi, A.G. Arani, Compos. Struct. 131, 654 (2015)CrossRefGoogle Scholar
  34. 34.
    C. Lim, G. Zhang, J. Reddy, J. Mech. Phys. Solids 78, 298 (2015)ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    L. Li, Y. Hu, L. Ling, Physica E 75, 118 (2016)ADSCrossRefGoogle Scholar
  36. 36.
    Y. Zhen, L. Zhou, Mod. Phys. Lett. B 31, 1750069 (2017)ADSCrossRefGoogle Scholar
  37. 37.
    L. Li, Y. Hu, Comput. Mater. Sci. 112, 282 (2016)CrossRefGoogle Scholar
  38. 38.
    M.H. Ghayesh, A. Farajpour, Int. J. Eng. Sci. 129, 84 (2018)CrossRefGoogle Scholar
  39. 39.
    A. Farajpour, M.H. Ghayesh, H. Farokhi, Int. J. Mech. Sci. 150, 510 (2019)CrossRefGoogle Scholar
  40. 40.
    M.H. Ghayesh, H. Farokhi, A. Farajpour, Microfluid. Nanofluid. 22, 72 (2018)CrossRefGoogle Scholar
  41. 41.
    M.H. Ghayesh, H. Farokhi, S. Hussain, Int. J. Eng. Sci. 109, 243 (2016)CrossRefGoogle Scholar
  42. 42.
    A. Farajpour, A. Rastgoo, M. Farajpour, Compos. Struct. 180, 179 (2017)CrossRefGoogle Scholar
  43. 43.
    M.H. Ghayesh, H. Farokhi, Int. J. Eng. Sci. 96, 34 (2015)CrossRefGoogle Scholar
  44. 44.
    M.H. Ghayesh, Int. J. Mech. Sci. 140, 339 (2018)CrossRefGoogle Scholar
  45. 45.
    M.H. Ghayesh, Int. J. Eng. Sci. 124, 115 (2018)MathSciNetCrossRefGoogle Scholar
  46. 46.
    A. Farajpour, M.H. Ghayesh, H. Farokhi, Int. J. Eng. Sci. 133, 231 (2018)CrossRefGoogle Scholar
  47. 47.
    P. Malekzadeh, M. Shojaee, J. Vib. Control 21, 2755 (2015)MathSciNetCrossRefGoogle Scholar
  48. 48.
    M. Farajpour, A. Shahidi, A. Farajpour, Mater. Res. Express 5, 035026 (2018)ADSCrossRefGoogle Scholar
  49. 49.
    M.H. Ghayesh, M. Amabili, H. Farokhi, Int. J. Eng. Sci. 71, 1 (2013)CrossRefGoogle Scholar
  50. 50.
    M.H. Ghayesh, Appl. Math. Model. 59, 583 (2018)MathSciNetCrossRefGoogle Scholar
  51. 51.
    M.H. Ghayesh, H. Farokhi, M. Amabili, Composites Part B: Eng. 50, 318 (2013)CrossRefGoogle Scholar
  52. 52.
    H. Farokhi, M.H. Ghayesh, M. Amabili, Int. J. Eng. Sci. 68, 11 (2013)CrossRefGoogle Scholar
  53. 53.
    M.H. Ghayesh, H. Farokhi, M. Amabili, Composites Part B: Eng. 60, 423 (2014)CrossRefGoogle Scholar
  54. 54.
    X. Li, L. Li, Y. Hu, Z. Ding, W. Deng, Compos. Struct. 165, 250 (2017)CrossRefGoogle Scholar
  55. 55.
    L. Li, X. Li, Y. Hu, Int. J. Eng. Sci. 102, 77 (2016)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Mechanical EngineeringUniversity of AdelaideSouth AustraliaAustralia
  2. 2.Department of Mechanical and Construction EngineeringNorthumbria UniversityNewcastle upon TyneUK

Personalised recommendations