Advertisement

I-BAND-GEM: a new way for improving BAND-GEM efficiency to thermal and cold neutrons

  • Gabriele CrociEmail author
  • Andrea Muraro
  • Enrico Perelli Cippo
  • Giovanni Grosso
  • Carina Höglund
  • Richard Hall-Wilton
  • Fabrizio Murtas
  • Davide Raspino
  • Linda Robinson
  • Nigel Rhodes
  • Marica Rebai
  • Erik Schooneveld
  • Ilario Defendi
  • Karl Zeitelhack
  • Marco Tardocchi
  • Giuseppe Gorini
Regular Article
  • 25 Downloads

Abstract.

The BAND-GEM detector represents one of the novel thermal neutron detection devices that have been developed in order to fulfil the needs of high intensity neutron sources that, like ESS (the European Spallation Source), will start operation in the next few years. The first version of this detector featured a detection efficiency of about 40% for neutrons with a wavelength of 4Å, a spatial resolution of about 6mm and a rate capability in the order of some MHz/cm2. The novelty of this device is represented by an improved 3D converter cathode (10 cm thick) based on 10B4C-coated aluminum grids positioned in a controlled gas mixture volume put on top of a Triple GEM amplifying stage. The position where the neutron interacts in the converter depends on their energy and it was observed that the first version of the detector would suffer from an efficiency decrease for long (\(> 5\) Å) neutron wavelength. This paper describes how the new 3D cathode allowed improving the detection efficiency at long neutron wavelengths while keeping all the benefits of the first BAND-GEM version.

References

  1. 1.
    Pacific North-West Laboratory, The ${}^{3}He$ Supply Problem, available at http://www.pnl.gov/main/publications/external/technical_reports/PNNL-18388.pdf
  2. 2.
    European Spallation Source, available at http://europeanspallationsource.se/
  3. 3.
    O. Kirstein et al., PoS (Vertex2014), 029 (2014) arXiv:1411.6194Google Scholar
  4. 4.
    S. Peggs, European Spallation Source Technical Design Report, report 2013-0001, Esss.seGoogle Scholar
  5. 5.
    K. Kanaki et al., J. Instrum. 13, P07016 (2018)CrossRefGoogle Scholar
  6. 6.
    F. Sauli, Nucl. Instrum. Methods A 386, 531 (1997)ADSCrossRefGoogle Scholar
  7. 7.
    S. Duarte Pinto et al., J. Instrum. 4, P12009 (2009)CrossRefGoogle Scholar
  8. 8.
    M. Villa et al., Nucl. Instrum. Methods A 628, 182 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    M. Alfonsi et al., Nucl. Instrum. Methods A 617, 151 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    M. Alexeev et al., Nucl. Instrum. Methods A 610, 174 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    M. Alexeev et al., Nucl. Instrum. Methods A 617, 396 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    M. Alexeev et al., J. Instrum. 5, P03009 (2010)CrossRefGoogle Scholar
  13. 13.
    M. Alexeev et al., Nucl. Instrum. Methods A 623, 129 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    M. Rebai et al., Rev. Sci. Instrum. 83, 02B721 (2012)CrossRefGoogle Scholar
  15. 15.
    R. Pasqualotto et al., Rev. Sci. Instrum. 83, 02B103 (2012)CrossRefGoogle Scholar
  16. 16.
    G. Croci et al., J. Instrum. 7, C03010 (2012)CrossRefGoogle Scholar
  17. 17.
    F. Murtas et al., J. Instrum. 7, P07021 (2012)CrossRefGoogle Scholar
  18. 18.
    G. Croci et al., Nucl. Instrum. Methods A 720, 144 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    G. Croci et al., Nucl. Instrum. Methods A 712, 108 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    G. Croci et al., Nucl. Instrum. Methods A 732, 217 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    G. Croci et al., EPL 107, 12001 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    G. Croci et al., Prog. Theor. Exp. Phys. 2014, 083H01 (2014)CrossRefGoogle Scholar
  23. 23.
    G. Albani et al., J. Instrum. 10, C04040 (2015)CrossRefGoogle Scholar
  24. 24.
    G. Croci et al., Eur. Phys. J. Plus 130, 118 (2015)CrossRefGoogle Scholar
  25. 25.
    E. Perelli Cippo, G. Croci et al., J. Instrum. 10, P10003 (2015)CrossRefGoogle Scholar
  26. 26.
    A. Muraro et al., Nucl. Instrum. Methods A 813, 147 (2016)ADSCrossRefGoogle Scholar
  27. 27.
    D. Pfeiffer et al., J. Instrum. 10, P04004 (2015)CrossRefGoogle Scholar
  28. 28.
    H. Oshita et al., Nucl. Instrum. Methods A 623, 126 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    H. Oshita et al., Nucl. Instrum. Methods A 672, 75 (2012)ADSCrossRefGoogle Scholar
  30. 30.
    D. Pfeiffer et al., J. Instrum. 11, P05011 (2016)CrossRefGoogle Scholar
  31. 31.
    G. Albani et al., Meas. Sci. Technol. 27, 115902 (2016)ADSCrossRefGoogle Scholar
  32. 32.
    M. Köhli et al., Nucl. Instrum. Methods A 828, 242 (2016)ADSCrossRefGoogle Scholar
  33. 33.
    M. Henske et al., Nucl. Instrum. Methods A 686, 151 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    A. Muraro et al., Prog. Theor. Exp. Phys. 2018, 023H01 (2018)CrossRefGoogle Scholar
  35. 35.
    C. Höglund et al., J. Appl. Phys. 111, 104908 (2012)ADSCrossRefGoogle Scholar
  36. 36.
    C. Höglund et al., Radiat. Phys. Chem. 113, 14 (2015)ADSCrossRefGoogle Scholar
  37. 37.
    B. Ketzer, Nucl. Instrum. A 732, 237 (2013)ADSCrossRefGoogle Scholar
  38. 38.
    A. Balla et al., Nucl. Instrum. Methods A 628, 194 (2011)ADSCrossRefGoogle Scholar
  39. 39.
    W. Bonivento et al., Nucl. Instrum. Methods A 491, 233 (2002)ADSCrossRefGoogle Scholar
  40. 40.
    Design of the FPGA-MB and of HVGEM Module, Gemini LNF Web Site, https://web.infn.it/GEMINI/
  41. 41.
  42. 42.
    Heinz Maier-Leibnitz Zentrum et al., J. Large-Scale Res. Facil. 3, A121 (2017)CrossRefGoogle Scholar
  43. 43.
  44. 44.
    T.G. Perring, The resolution function of the chopper spectrometer HET at ISIS, in Journal of Neutron Research, Proceedings of the Twelfth Meeting of the International Collaboration on Advanced Neutron Sources (ICANS- XII) (Cosener’s House, Abingdon, UK, 1993) pp. I-328Google Scholar
  45. 45.
  46. 46.
  47. 47.
  48. 48.
    G. Albani, High-rate measurements of the novel BAND-GEM technology for thermal neutron detection at spallation sources, to be submitted to J. InstrumGoogle Scholar
  49. 49.
    A.J. Jackson, LoKI - A Broad Band High Flux SANS Instrument for the ESS, in Proceedings ICANS XXI Conference,  https://doi.org/10.11484/jaea-conf-2015-002

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Gabriele Croci
    • 1
    Email author
  • Andrea Muraro
    • 2
  • Enrico Perelli Cippo
    • 2
  • Giovanni Grosso
    • 2
  • Carina Höglund
    • 3
  • Richard Hall-Wilton
    • 3
    • 4
  • Fabrizio Murtas
    • 5
  • Davide Raspino
    • 6
  • Linda Robinson
    • 3
  • Nigel Rhodes
    • 6
  • Marica Rebai
    • 2
  • Erik Schooneveld
    • 6
  • Ilario Defendi
    • 7
  • Karl Zeitelhack
    • 7
  • Marco Tardocchi
    • 2
  • Giuseppe Gorini
    • 1
  1. 1.Dipartimento di Fisica “G. Occhialini”Università degli Studi di Milano-BicoccaMilanoItaly
  2. 2.Istituto di Fisica del Plasma “P. Caldirola”CNRMilanoItaly
  3. 3.European Spallation Source ESS ABLundSweden
  4. 4.Mid-Sweden UniversitySundsvallSweden
  5. 5.Istituto Nazionale di Fisica NucleareLaboratori Nazionali di FrascatiFrascatiItaly
  6. 6.STFC-ISIS FacilityRutherford Appleton LaboratoryDidcotUK
  7. 7.Heinz Maier-Leibnitz Zentrum (MLZ)TUMGarchingGermany

Personalised recommendations