Advertisement

Soliton solutions and modulation instability analysis of the coupled Zakharov-Kuznetsov equation

  • Vineesh Kumar
  • Arvind PatelEmail author
Regular Article
  • 46 Downloads

Abstract.

The bright, dark and kink soliton solutions of the coupled Zakharov-Kuznetsov (ZK) equation are obtained by using the solitary wave ansatz method, variational approximation (VA), variational iteration method (VIM) and Adomian's decomposition method (ADM). The bright and dark soliton solutions are multiple soliton solutions at time t = 0 which reduce into stationary soliton through single soliton for sufficiently large time t . The approximate solutions by the VA, VIM and ADM are compared with the exact solution obtained by the ansatz method. The VIM gives better approximate solution of the coupled ZK equation than the VA. The absolute error and convergence analysis of the approximate solutions by the VIM and ADM show that the approximate solutions converge to the exact solution. The modulation instability is used to discuss the stability of the steady state solution of the coupled ZK equation and it demonstrates that the nonlinear term in the equation decides the modulational stability of the soliton solution.

References

  1. 1.
    N.J. Zabusky, M.D. Kruskal, Phys. Rev. Lett. 15, 240 (1965)ADSCrossRefGoogle Scholar
  2. 2.
    A.-M. Wazwaz, Commun. Nonlinear Sci. Numer. 10, 451 (2005)MathSciNetCrossRefGoogle Scholar
  3. 3.
    A.-M. Wazwaz, Appl. Math. Comput. 167, 1162 (2005)MathSciNetGoogle Scholar
  4. 4.
    D.J. Korteweg, G. de Vries, Philos. Mag. 39, 422 (1895)MathSciNetCrossRefGoogle Scholar
  5. 5.
    G. Gottwald, R. Grimshaw, B.A. Malomed, Phys. Lett. A 227, 47 (1997)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    J. Gear, R. Grimshaw, Stud. Appl. Math. 70, 235 (1984)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    H. Mitsudera, J. Atmos. Sci. 51, 3137 (1994)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    M.J. Ablowitz, P.A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, Lecture Notes Series, Vol. 149 (Cambridge University Press, Cambridge, 1991)Google Scholar
  9. 9.
    A. Espinosa-Ceron, B.A. Malomed, J. Fujioka, R.F. Rodriguez, Chaos 22, 033145 (2012)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    D. Anderson, Phys. Rev. A 27, 3135 (1983)ADSCrossRefGoogle Scholar
  11. 11.
    B.A. Malomed, in Progress in Optics, edited by E. Wolf, Vol. 43 (Amsterdam, North Holland, 2002) p. 71Google Scholar
  12. 12.
    G. Gottwald, R. Grimshaw, B.A. Malomed, Phys. Lett. A 248, 208 (1998)ADSCrossRefGoogle Scholar
  13. 13.
    W. Huang, Chaos, Solitons Fractals 29, 365 (2006)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    H. Heng-Chun, J. Xiao-Qing, S. Ben-Wen, Phys. Lett. A 375, 3459 (2011)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    M. Arshad, A. Seadawy, D. Lu, J. Wang, Results Phys. 6, 1136 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    O.P. Porogo, B. Muatjetjeja, A.R. Adem, Comput. Math. Appl. 73, 864 (2017)MathSciNetCrossRefGoogle Scholar
  17. 17.
    A. Biswas, Phys. Lett. A 372, 4601 (2008)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    H. Triki, A.-M. Wazwaz, Phys. Lett. A 373, 2162 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    A. Biswas, Phys. Lett. A 373, 2931 (2009)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    A. Biswas, H. Triki, M. Labidi, Phys. Wave Phenom. 19, 24 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    R. Sassaman, A. Biswas, Nonlinear Dyn. 61, 23 (2010)CrossRefGoogle Scholar
  22. 22.
    O. Guner, A. Bekir, A. Korkmaz, Eur. Phys. J. Plus 132, 92 (2017)CrossRefGoogle Scholar
  23. 23.
    X.-X. Du, B. Tiana, X.-Y. Wu, H.-M. Yin, C.-R. Zhang, Eur. Phys. J. Plus 133, 378 (2018)CrossRefGoogle Scholar
  24. 24.
    M. Bondeson, M. Lisak, D. Anderson, Phys. Scr. 20, 479 (1979)ADSCrossRefGoogle Scholar
  25. 25.
    V. Steblina, Y.S. Kivshar, M. Lisak, B.A. Malomed, Opt. Commun. 118, 345 (1995)ADSCrossRefGoogle Scholar
  26. 26.
    B.A. Malomed, P. Drummond, H. He, A. Berntson, D. Anderson, M. Lisak, Phys. Rev. E 56, 4725 (1997)ADSCrossRefGoogle Scholar
  27. 27.
    J.H. He, Comput. Method Appl. M 167, 57 (1998)CrossRefGoogle Scholar
  28. 28.
    J.H. He, Comput. Method Appl. M 167, 69 (1998)CrossRefGoogle Scholar
  29. 29.
    J.H. He, Int. J. Nonlinear Mech. 34, 699 (1999)ADSCrossRefGoogle Scholar
  30. 30.
    J.H. He, Comm. Nonlinear Sci. Numer. Simul. 3, 260 (1998)ADSCrossRefGoogle Scholar
  31. 31.
    A.-M. Wazwaz, Partial Differential Equations and Solitary Waves Theory (Springer, Berlin, Higher Education, Beijing, 2009)Google Scholar
  32. 32.
    G. Adomian, Math. Comput. Simul. 40, 107 (1995)CrossRefGoogle Scholar
  33. 33.
    G. Adomian, Solving Frontier Problems of Physics: The Decomposition Method (Kluwer Academic Publishers, Dordrecht, 1994)Google Scholar
  34. 34.
    D.D. Ganji, M. Safari, R. Ghayor, Numer. Methods Partial Differ. Equ. 27, 887 (2011)CrossRefGoogle Scholar
  35. 35.
    K. Batiha, J. Comput. Appl. Math. 216, 157 (2008)ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    M. Singh, A. Patel, R. Bajargaan, Int. J. Appl. Math. 29, 775 (2016)MathSciNetCrossRefGoogle Scholar
  37. 37.
    M. Sheikholeslami, D.D. Ganji, H.R. Ashorynejad, Powder Technol. 239, 259 (2013)CrossRefGoogle Scholar
  38. 38.
    A.-M. Wazwaz, R. Rach, L. Bougoffa, J.-S. Duan, Comput. Model. Eng. Sci. 100, 507 (2014)Google Scholar
  39. 39.
    A.-M. Wazwaz, J. Math. Chem. 55, 799 (2017)MathSciNetCrossRefGoogle Scholar
  40. 40.
    A. Patel, V. Kumar, Chin. J. Phys. 56, 819 (2018)CrossRefGoogle Scholar
  41. 41.
    V. Kumar, A. Patel, Far East J. Math. Sci. 103, 1721 (2018)Google Scholar
  42. 42.
    Yu.N. Karamzin, A.P. Sukhorukov, JETP Lett. 11, 339 (1974)ADSGoogle Scholar
  43. 43.
    C. Etrich, F. Lederer, B.A. Malomed, T. Peschel, U. Peschel, Prog. Opt. 41, 483 (2000)ADSCrossRefGoogle Scholar
  44. 44.
    Z. Odibat, Math. Comput. Model. 51, 1181 (2010)CrossRefGoogle Scholar
  45. 45.
    N.H. Sweilam, M.M. Khader, Int. J. Comput. Math. 87, 1120 (2010)CrossRefGoogle Scholar
  46. 46.
    G.P. Agrawal, Nonlinear Fiber Optics, 5th edition (Elsevier, New York, 2013)Google Scholar
  47. 47.
    M. Saha, A.K. Sarma, Commun Nonlinear Sci. Numer. Simul. 18, 2420 (2013)ADSMathSciNetCrossRefGoogle Scholar
  48. 48.
    Aly R. Seadawy, M. Arshad, Dianchen Lu, Eur. Phys. J. Plus 132, 162 (2017)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of DelhiDelhiIndia

Personalised recommendations