Advertisement

General dynamic properties of conduction electron within the first Brillouin zone of graphene

  • A. D. Suprun
  • L. V. ShmelevaEmail author
Regular Article
  • 17 Downloads
Part of the following topical collections:
  1. Focus Point on Nanotechnology, Nanomaterials and Interfaces

Abstract.

Dispersion law of an electron (as a quasiparticle in the graphene conduction band) is sufficiently complex to construct its generalized analytic dynamics. This is due to such a “mixture” of the wave vector components that the dispersion law (which is also the quasiparticle Hamiltonian) cannot be “factored” into two summands containing only one component of the wave vector. It was established that within the first Brillouin zone of graphene there is a sufficiently large region, \( \vert k_{x}\vert \le \pi/3a\sqrt{3}\); \( \vert k_{y}\vert \le \pi/3a\), in which it is possible to construct an approximate dispersion law. Based on this, the corresponding energy range of electron injection was estimated for graphene: \( E \le 5\) eV. This range completely “covers” the entire range used in applications for graphenes, and the estimation itself became possible due to the generalized de Broglie relation between the components of the wave and mechanical momenta. In this case, the velocity and the effective mass of the injected electron were determined to determine the components of the mechanical momentum. A Lagrangian for an electron was also determined, as a quasiparticle, with respect to its wave description. Such a Lagrangian is a summand in the phase of electron wave function at its quantum description.

References

  1. 1.
    A.D. Suprun, L.V. Shmeleva, Nanoscale Res. Lett. 12, 187 (2017)CrossRefGoogle Scholar
  2. 2.
    A.N. Morozovska et al., J. Appl. Physics 116, 066817 (2014)CrossRefGoogle Scholar
  3. 3.
    S.D. Sarma et al., Rev. Mod. Phys. 83, 407 (2011)CrossRefGoogle Scholar
  4. 4.
    A.N. Morozovska et al., Phys. Rev. B 91, 235312 (2015)CrossRefGoogle Scholar
  5. 5.
    A. Grüneis et al., Phys. Rev. B 78, 205425 (2008)CrossRefGoogle Scholar
  6. 6.
    A.N. Morozovska, E.A. Eliseev, M.V. Strikha, Appl. Phys. Lett. 108, 232902 (2016)CrossRefGoogle Scholar
  7. 7.
    A.S. Davydov, Solitons in Molecular Systems (Kluwer Academic Publishers, 1991)Google Scholar
  8. 8.
    Yu.E. Natanzon, L.S. Brizhik, A.A. Eremko, Ukr. J. Phys. 51, 413 (2006)Google Scholar
  9. 9.
    A.D. Suprun, L.V. Shmeleva, Nanoscale Res. Lett. 9, 200 (2014)CrossRefGoogle Scholar
  10. 10.
    A.D. Suprun, L.V. Shmeleva, Nanoscale Res. Lett. 10, 121 (2015)CrossRefGoogle Scholar
  11. 11.
    H. Ebrahimnejad, G.A. Sawatzky, M. Berciu, Nat. Phys. 10, 951 (2014)CrossRefGoogle Scholar
  12. 12.
    A.V. Filippov et al., JETP 108, 497 (2009)CrossRefGoogle Scholar
  13. 13.
    I.M. Mryglod, V.M. Kuporov, Ukr. J. Phys. 55, 1172 (2010)Google Scholar
  14. 14.
    O.P. Verkhoglyadova, B.T. Tsurutani, G.S. Lakhina, J. Geophys. Res.: Space Phys. 118, 7695 (2013)CrossRefGoogle Scholar
  15. 15.
    A.D. Suprun, L.V. Shmeleva, Nanoscale Res. Lett. 11, 74 (2016)CrossRefGoogle Scholar
  16. 16.
    A.D. Suprun, L.V. Shmeleva, Ukr. J. Phys. 61, 537 (2016)CrossRefGoogle Scholar
  17. 17.
    L.V. Shmeleva, A.D. Suprun, Funct. Mater. 22, 524 (2015)CrossRefGoogle Scholar
  18. 18.
    A.D. Suprun, L.V. Shmeleva, Funct. Mater. 19, 508 (2012)Google Scholar
  19. 19.
    A.D. Suprun, L.V. Shmeleva, Funct. Mater. 21, 69 (2014)CrossRefGoogle Scholar
  20. 20.
    Yu.A. Sitenko, N.D. Vlasii, Nucl. Phys. B 787, 241 (2007)CrossRefGoogle Scholar
  21. 21.
    P.R. Wallace, Phys. Rev. 71, 622 (1947)CrossRefGoogle Scholar
  22. 22.
    H. Hibino et al., Phys. Rev. B 77, 075413 (2008)CrossRefGoogle Scholar
  23. 23.
    P.K. Bose et al., Quantum Matter 1, 89 (2012)CrossRefGoogle Scholar
  24. 24.
    Zhihua Shen, Xiao Wang, Shengli Wu, Jinshou Tian, Mod. Phys. Lett. B 30, 1650137 (2016)CrossRefGoogle Scholar
  25. 25.
    Ji Lin, Chuanzeng Zhang, Linlin Sun, Jun Lu, Adv. Appl. Math. Mech. 10, 322 (2018)MathSciNetCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Taras Shevchenko National University of KyivCity of KyivUkraine

Personalised recommendations